Attention-Based Multiscale Temporal Fusion Network for Uncertain-Mode Fault Diagnosis in Multimode Processes
- URL: http://arxiv.org/abs/2504.05172v2
- Date: Mon, 14 Apr 2025 08:47:52 GMT
- Title: Attention-Based Multiscale Temporal Fusion Network for Uncertain-Mode Fault Diagnosis in Multimode Processes
- Authors: Guangqiang Li, M. Amine Atoui, Xiangshun Li,
- Abstract summary: Fault diagnosis in multimode processes plays a critical role in ensuring the safe operation of industrial systems.<n>It faces a great challenge yet to be addressed - that is, the significant distributional differences among monitoring data from multiple modes.<n>This paper introduces a novel method called attention-based multiscale temporal fusion network.<n>The proposed model achieves superior diagnostic performance and maintains a small model size.
- Score: 1.9389881806157316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fault diagnosis in multimode processes plays a critical role in ensuring the safe operation of industrial systems across multiple modes. It faces a great challenge yet to be addressed - that is, the significant distributional differences among monitoring data from multiple modes make it difficult for the models to extract shared feature representations related to system health conditions. In response to this problem, this paper introduces a novel method called attention-based multiscale temporal fusion network. The multiscale depthwise convolution and gated recurrent unit are employed to extract multiscale contextual local features and long-short-term features. Instance normalization is applied to suppress mode-specific information. Furthermore, a temporal attention mechanism is designed to focus on critical time points with higher cross-mode shared information, thereby enhancing the accuracy of fault diagnosis. The proposed model is applied to Tennessee Eastman process dataset and three-phase flow facility dataset. The experiments demonstrate that the proposed model achieves superior diagnostic performance and maintains a small model size. The source code will be available on GitHub at https://github.com/GuangqiangLi/AMTFNet.
Related papers
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
Machine learning applications on signals such as computer vision or biomedical data often face challenges due to the variability that exists across hardware devices or session recordings.
In this work, we propose Spatio-Temporal Monge Alignment (STMA) to mitigate these variabilities.
We show that STMA leads to significant and consistent performance gains between datasets acquired with very different settings.
arXiv Detail & Related papers (2024-07-19T13:33:38Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - Application of Multimodal Fusion Deep Learning Model in Disease Recognition [14.655086303102575]
This paper introduces an innovative multi-modal fusion deep learning approach to overcome the drawbacks of traditional single-modal recognition techniques.
During the feature extraction stage, cutting-edge deep learning models are applied to distill advanced features from image-based, temporal, and structured data sources.
The findings demonstrate significant advantages of the multimodal fusion model across multiple evaluation metrics.
arXiv Detail & Related papers (2024-05-22T23:09:49Z) - Multi-scale Bottleneck Transformer for Weakly Supervised Multimodal Violence Detection [9.145305176998447]
Weakly supervised multimodal violence detection aims to learn a violence detection model by leveraging multiple modalities.
We propose a new weakly supervised MVD method that explicitly addresses the challenges of information redundancy, modality imbalance, and modality asynchrony.
Experiments on the largest-scale XD-Violence dataset demonstrate that the proposed method achieves state-of-the-art performance.
arXiv Detail & Related papers (2024-05-08T15:27:08Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Dynamic Multimodal Information Bottleneck for Multimodality
Classification [26.65073424377933]
We propose a dynamic multimodal information bottleneck framework for attaining a robust fused feature representation.
Specifically, our information bottleneck module serves to filter out the task-irrelevant information and noises in the fused feature.
Our method surpasses the state-of-the-art and is significantly more robust, being the only method to remain performance when large-scale noisy channels exist.
arXiv Detail & Related papers (2023-11-02T08:34:08Z) - ImDiffusion: Imputed Diffusion Models for Multivariate Time Series
Anomaly Detection [44.21198064126152]
We propose a novel anomaly detection framework named ImDiffusion.
ImDiffusion combines time series imputation and diffusion models to achieve accurate and robust anomaly detection.
We evaluate the performance of ImDiffusion via extensive experiments on benchmark datasets.
arXiv Detail & Related papers (2023-07-03T04:57:40Z) - Diagnostic Spatio-temporal Transformer with Faithful Encoding [54.02712048973161]
This paper addresses the task of anomaly diagnosis when the underlying data generation process has a complex-temporal (ST) dependency.
We formalize the problem as supervised dependency discovery, where the ST dependency is learned as a side product of time-series classification.
We show that temporal positional encoding used in existing ST transformer works has a serious limitation capturing frequencies in higher frequencies (short time scales)
We also propose a new ST dependency discovery framework, which can provide readily consumable diagnostic information in both spatial and temporal directions.
arXiv Detail & Related papers (2023-05-26T05:31:23Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - An Evidential Real-Time Multi-Mode Fault Diagnosis Approach Based on
Broad Learning System [26.733033919978364]
We propose a novel approach to achieve real-time multi-mode fault diagnosis in industrial systems.
Our approach uses an extended evidence reasoning (ER) algorithm to fuse information and merge outputs from different base classifiers.
The effectiveness of the proposed approach is demonstrated on the multi-mode Tennessee Eastman process dataset.
arXiv Detail & Related papers (2023-04-29T04:42:44Z) - Multimodal Industrial Anomaly Detection via Hybrid Fusion [59.16333340582885]
We propose a novel multimodal anomaly detection method with hybrid fusion scheme.
Our model outperforms the state-of-the-art (SOTA) methods on both detection and segmentation precision on MVTecD-3 AD dataset.
arXiv Detail & Related papers (2023-03-01T15:48:27Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - HIFI: Anomaly Detection for Multivariate Time Series with High-order
Feature Interactions [7.016615391171876]
HIFI builds multivariate feature interaction graph automatically and uses the graph convolutional neural network to achieve high-order feature interactions.
Experiments on three publicly available datasets demonstrate the superiority of our framework compared with state-of-the-art approaches.
arXiv Detail & Related papers (2021-06-11T04:57:03Z) - Exploring Data Augmentation for Multi-Modality 3D Object Detection [82.9988604088494]
It is counter-intuitive that multi-modality methods based on point cloud and images perform only marginally better or sometimes worse than approaches that solely use point cloud.
We propose a pipeline, named transformation flow, to bridge the gap between single and multi-modality data augmentation with transformation reversing and replaying.
Our method also wins the best PKL award in the 3rd nuScenes detection challenge.
arXiv Detail & Related papers (2020-12-23T15:23:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.