On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine
- URL: http://arxiv.org/abs/2110.08820v2
- Date: Tue, 19 Oct 2021 16:49:58 GMT
- Title: On-board Fault Diagnosis of a Laboratory Mini SR-30 Gas Turbine Engine
- Authors: Richa Singh
- Abstract summary: A data-driven fault diagnosis and isolation scheme is explicitly developed for failure in the fuel supply system and sensor measurements.
A model is trained using machine learning classifiers to detect a given set of fault scenarios in real-time on which it is trained.
Several simulation studies were carried out to demonstrate and illustrate the proposed fault diagnosis scheme's advantages, capabilities, and performance.
- Score: 54.650189434544146
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Inspired by recent progress in machine learning, a data-driven fault
diagnosis and isolation (FDI) scheme is explicitly developed for failure in the
fuel supply system and sensor measurements of the laboratory gas turbine
system. A passive approach of fault diagnosis is implemented where a model is
trained using machine learning classifiers to detect a given set of fault
scenarios in real-time on which it is trained. Towards the end, a comparative
study is presented for well-known classification techniques, namely Support
vector classifier, linear discriminant analysis, K-neighbor, and decision
trees. Several simulation studies were carried out to demonstrate and
illustrate the proposed fault diagnosis scheme's advantages, capabilities, and
performance.
Related papers
- Machine Learning for Pre/Post Flight UAV Rotor Defect Detection Using Vibration Analysis [54.550658461477106]
Unmanned Aerial Vehicles (UAVs) will be critical infrastructural components of future smart cities.
In order to operate efficiently, UAV reliability must be ensured by constant monitoring for faults and failures.
This paper leverages signal processing and Machine Learning methods to analyze the data of a comprehensive vibrational analysis to determine the presence of rotor blade defects.
arXiv Detail & Related papers (2024-04-24T13:50:27Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
Fault detection and diagnosis of electrical motors is of utmost importance in ensuring the safe and reliable operation of industrial systems.
The existing data-driven deep learning approaches for machine fault diagnosis rely extensively on huge amounts of labeled samples.
We propose a foundational model-based Active Learning framework that utilizes less amount of labeled samples.
arXiv Detail & Related papers (2023-11-27T03:25:12Z) - A Sparse Bayesian Learning for Diagnosis of Nonstationary and Spatially
Correlated Faults with Application to Multistation Assembly Systems [3.4991031406102238]
This article proposes a novel fault diagnosis method: clustering spatially correlated sparse Bayesian learning (CSSBL)
The proposed method's efficacy is provided through numerical and real-world case studies utilizing an actual autobody assembly system.
The generalizability of the proposed method allows the technique to be applied in fault diagnosis in other domains, including communication and healthcare systems.
arXiv Detail & Related papers (2023-10-20T23:56:53Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Fault diagnosis for open-circuit faults in NPC inverter based on
knowledge-driven and data-driven approaches [2.22076315914821]
The open-circuit faults diagnosis and location issue of the neutral-point-clamped (NPC) inverters are analysed.
A novel fault diagnosis approach based on knowledge driven and data driven was presented for the open-circuit faults in insulated-gate bipolar transistors (IGBTs) of NPC inverter.
arXiv Detail & Related papers (2022-10-31T04:33:53Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - System Resilience through Health Monitoring and Reconfiguration [56.448036299746285]
We demonstrate an end-to-end framework to improve the resilience of man-made systems to unforeseen events.
The framework is based on a physics-based digital twin model and three modules tasked with real-time fault diagnosis, prognostics and reconfiguration.
arXiv Detail & Related papers (2022-08-30T20:16:17Z) - BI-RADS-Net: An Explainable Multitask Learning Approach for Cancer
Diagnosis in Breast Ultrasound Images [69.41441138140895]
This paper introduces BI-RADS-Net, a novel explainable deep learning approach for cancer detection in breast ultrasound images.
The proposed approach incorporates tasks for explaining and classifying breast tumors, by learning feature representations relevant to clinical diagnosis.
Explanations of the predictions (benign or malignant) are provided in terms of morphological features that are used by clinicians for diagnosis and reporting in medical practice.
arXiv Detail & Related papers (2021-10-05T19:14:46Z) - An Explainable Artificial Intelligence Approach for Unsupervised Fault
Detection and Diagnosis in Rotating Machinery [2.055054374525828]
This paper proposes a new approach for fault detection and diagnosis in rotating machinery.
The methodology consists of three parts: feature extraction, fault detection and fault diagnosis.
The effectiveness of the proposed approach is shown on three datasets containing different mechanical faults.
arXiv Detail & Related papers (2021-02-23T18:28:18Z) - Data-Driven Fault Diagnosis Analysis and Open-Set Classification of
Time-Series Data [1.0152838128195467]
A framework for data-driven analysis and open-set classification is developed for fault diagnosis applications.
A data-driven fault classification algorithm is proposed which can handle imbalanced datasets, class overlapping, and unknown faults.
An algorithm is proposed to estimate the size of the fault when training data contains information from known fault realizations.
arXiv Detail & Related papers (2020-09-10T09:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.