論文の概要: Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime
- arxiv url: http://arxiv.org/abs/2311.07633v5
- Date: Wed, 20 Nov 2024 13:20:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:10:54.239822
- Title: Benchmarking PtO and PnO Methods in the Predictive Combinatorial Optimization Regime
- Title(参考訳): 予測的組合せ最適化規則におけるPtOとPnOのベンチマーク
- Authors: Haoyu Geng, Hang Ruan, Runzhong Wang, Yang Li, Yang Wang, Lei Chen, Junchi Yan,
- Abstract要約: 予測最適化(英: Predictive optimization)は、エネルギーコストを意識したスケジューリングや広告予算配分など、多くの現実世界のアプリケーションの正確なモデリングである。
我々は,広告のための新しい産業データセットを含む8つの問題に対して,既存のPtO/PnOメソッド11をベンチマークするモジュラーフレームワークを開発した。
本研究は,8ベンチマーク中7ベンチマークにおいて,PnOアプローチがPtOよりも優れていることを示すが,PnOの設計選択に銀の弾丸は見つからない。
- 参考スコア(独自算出の注目度): 59.27851754647913
- License:
- Abstract: Predictive combinatorial optimization, where the parameters of combinatorial optimization (CO) are unknown at the decision-making time, is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising. Tackling such a problem usually involves a prediction model and a CO solver. These two modules are integrated into the predictive CO pipeline following two design principles: "Predict-then-Optimize (PtO)", which learns predictions by supervised training and subsequently solves CO using predicted coefficients, while the other, named "Predict-and-Optimize (PnO)", directly optimizes towards the ultimate decision quality and claims to yield better decisions than traditional PtO approaches. However, there lacks a systematic benchmark of both approaches, including the specific design choices at the module level, as well as an evaluation dataset that covers representative real-world scenarios. To this end, we develop a modular framework to benchmark 11 existing PtO/PnO methods on 8 problems, including a new industrial dataset for combinatorial advertising that will be released. Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO. A comprehensive categorization of current approaches and integration of typical scenarios are provided under a unified benchmark. Therefore, this paper could serve as a comprehensive benchmark for future PnO approach development and also offer fast prototyping for application-focused development. The code is available at https://github.com/Thinklab-SJTU/PredictiveCO-Benchmark.
- Abstract(参考訳): 予測的組合せ最適化(英: Predictive combinatorial optimization、CO)とは、エネルギーコストを意識したスケジューリングや広告予算の割り当てなど、現実の多くのアプリケーションの正確なモデリングである。
このような問題に対処するには、通常予測モデルとCOソルバが関係する。
これら2つのモジュールは、2つの設計原則に従って予測COパイプラインに統合される: 教師付きトレーニングによって予測を学習し、その後予測係数を用いてCOを解き、もう1つは"予測と最適化(Predict-and-Optimize、PnO)"と呼ばれ、決定品質を直接最適化し、従来のPtOアプローチよりも優れた決定を下す。
しかしながら、モジュールレベルでの設計選択を含む、両方のアプローチのシステマティックなベンチマークや、代表的な実世界のシナリオをカバーする評価データセットが欠落している。
そこで本研究では,既存のPtO/PnOメソッド11を8つの問題に対してベンチマークするモジュラーフレームワークを開発した。
本研究は,8ベンチマーク中7ベンチマークにおいて,PnOアプローチがPtOよりも優れていることを示すが,PnOの設計選択に銀の弾丸は見つからない。
現在のアプローチの包括的な分類と典型的なシナリオの統合は、統一されたベンチマークの下で提供される。
したがって,本論文は今後のPnOアプローチ開発のための包括的なベンチマークとして機能し,アプリケーション中心の開発に高速なプロトタイピングを提供する。
コードはhttps://github.com/Thinklab-SJTU/PredictiveCO-Benchmarkで公開されている。
関連論文リスト
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
まず最適化モデルを構築し,非単調な選好をモデル化する。
本稿では,情報量測定手法と質問選択戦略を考案し,各イテレーションにおいて最も情報に富む選択肢を特定する。
2つのインクリメンタルな選好に基づくアルゴリズムは、潜在的に単調な選好を学習するために開発された。
論文 参考訳(メタデータ) (2024-09-04T14:36:20Z) - Sample-efficient Learning of Infinite-horizon Average-reward MDPs with General Function Approximation [53.17668583030862]
一般関数近似の文脈において,無限水平平均逆マルコフ決定過程(AMDP)について検討する。
最適化最適化(LOOP)と呼ばれる新しいアルゴリズムフレームワークを提案する。
我々は LOOP がサブ線形 $tildemathcalO(mathrmpoly(d, mathrmsp(V*)) sqrtTbeta )$ regret を達成することを示す。
論文 参考訳(メタデータ) (2024-04-19T06:24:22Z) - Contextual Stochastic Bilevel Optimization [50.36775806399861]
文脈情報と上層変数の期待を最小化する2レベル最適化フレームワークCSBOを導入する。
メタラーニング、パーソナライズドラーニング、エンド・ツー・エンドラーニング、Wassersteinはサイド情報(WDRO-SI)を分散的に最適化している。
論文 参考訳(メタデータ) (2023-10-27T23:24:37Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
我々は,新しいtextscAdmeta(textbfADouble指数textbfMov averagtextbfE textbfAdaptiveおよび非適応運動量)フレームワークを提案する。
我々は、textscAdmetaR と textscAdmetaS の2つの実装を提供し、前者は RAdam を、後者は SGDM をベースとしています。
論文 参考訳(メタデータ) (2023-07-02T18:16:06Z) - Provably Efficient UCB-type Algorithms For Learning Predictive State
Representations [55.00359893021461]
逐次決定問題は、予測状態表現(PSR)によってモデル化された低ランク構造が認められる場合、統計的に学習可能である
本稿では,推定モデルと実モデル間の全変動距離を上限とする新しいボーナス項を特徴とする,PSRに対する最初のUCB型アプローチを提案する。
PSRに対する既存のアプローチとは対照的に、UCB型アルゴリズムは計算的トラクタビリティ、最優先の準最適ポリシー、モデルの精度が保証される。
論文 参考訳(メタデータ) (2023-07-01T18:35:21Z) - Robust expected improvement for Bayesian optimization [1.8130068086063336]
本稿では,BO/GPフレームワークに敵対的手法を組み込む,堅牢な予測改善(REI)と呼ばれる代理モデルとアクティブラーニング手法を提案する。
ベンチマーク・シンセティック・エクササイズと、様々な複雑さの実際の問題について、いくつかの競合相手と比較し、比較する。
論文 参考訳(メタデータ) (2023-02-16T22:34:28Z) - Designing MacPherson Suspension Architectures using Bayesian
Optimization [21.295015276123962]
コンプライアンステストは、まず、規律モデルを用いたコンピュータシミュレーションによって行われる。
このシミュレーションを通した設計は、物理的プロトタイピングとして考慮される。
提案手法は汎用的で,スケーラブルで,効率的であることを示す。
論文 参考訳(メタデータ) (2022-06-17T21:50:25Z) - SimPO: Simultaneous Prediction and Optimization [3.181417685380586]
本稿では,同時予測最適化(SimPO)フレームワークの定式化を提案する。
このフレームワークでは,決定駆動型予測MLモデルと最適化対象関数の重み付き損失を併用する。
論文 参考訳(メタデータ) (2022-03-31T20:01:36Z) - The Perils of Learning Before Optimizing [16.97597806975415]
本稿では,最適化タスクを通じて予測モデルを識別することで,エンドツーエンドで予測モデルを学習する方法を示す。
2段階のアプローチとエンドツーエンドのアプローチのパフォーマンスギャップは、最適化における相関の概念の強調と密接に関係していることが示される。
論文 参考訳(メタデータ) (2021-06-18T20:43:47Z) - Application-Driven Learning: A Closed-Loop Prediction and Optimization Approach Applied to Dynamic Reserves and Demand Forecasting [41.94295877935867]
我々は、予測と意思決定のプロセスが統合され、協調最適化される新しいクローズドループフレームワークであるアプリケーション駆動学習を提案する。
提案手法は拡張性があり,標準のオープンループ手法よりも一貫して性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-26T02:43:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。