論文の概要: Robust expected improvement for Bayesian optimization
- arxiv url: http://arxiv.org/abs/2302.08612v2
- Date: Mon, 14 Aug 2023 21:19:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-16 17:19:18.334479
- Title: Robust expected improvement for Bayesian optimization
- Title(参考訳): ベイズ最適化のためのロバストな期待改善
- Authors: Ryan B. Christianson, Robert B. Gramacy
- Abstract要約: 本稿では,BO/GPフレームワークに敵対的手法を組み込む,堅牢な予測改善(REI)と呼ばれる代理モデルとアクティブラーニング手法を提案する。
ベンチマーク・シンセティック・エクササイズと、様々な複雑さの実際の問題について、いくつかの競合相手と比較し、比較する。
- 参考スコア(独自算出の注目度): 1.8130068086063336
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian Optimization (BO) links Gaussian Process (GP) surrogates with
sequential design toward optimizing expensive-to-evaluate black-box functions.
Example design heuristics, or so-called acquisition functions, like expected
improvement (EI), balance exploration and exploitation to furnish global
solutions under stringent evaluation budgets. However, they fall short when
solving for robust optima, meaning a preference for solutions in a wider domain
of attraction. Robust solutions are useful when inputs are imprecisely
specified, or where a series of solutions is desired. A common mathematical
programming technique in such settings involves an adversarial objective,
biasing a local solver away from ``sharp'' troughs. Here we propose a surrogate
modeling and active learning technique called robust expected improvement (REI)
that ports adversarial methodology into the BO/GP framework. After describing
the methods, we illustrate and draw comparisons to several competitors on
benchmark synthetic exercises and real problems of varying complexity.
- Abstract(参考訳): ベイズ最適化 (bo) はガウス過程 (gp) をサロゲートし、費用対評価ブラックボックス関数を最適化する。
例えば、期待改善(ei)やバランス探索、グローバルなソリューション提供のための活用といった、厳格な評価予算の下での設計ヒューリスティックやいわゆる獲得関数などです。
しかし、それらはロバスト・オプティマ(英語版)を解くときに不足し、より広いアトラクション領域における解の好みを意味する。
ロバストな解は、入力が不正確に指定されたり、一連の解が望まれる場合に有用である。
そのような設定における一般的な数学的プログラミング手法は、逆の目的を含み、局所解法を ``sharp''' のトラフから偏らせる。
本稿では,頑健な予測改善(REI)と呼ばれる代理モデルとアクティブな学習手法を提案し,その手法をBO/GPフレームワークに移植する。
この方法を説明した後、ベンチマーク合成エクササイズと様々な複雑さの実際の問題において、いくつかの競合相手と比較し、比較する。
関連論文リスト
- Global Optimization of Gaussian Process Acquisition Functions Using a Piecewise-Linear Kernel Approximation [2.3342885570554652]
本稿では,プロセスカーネルに対する一括近似と,取得関数に対するMIQP表現を紹介する。
我々は,合成関数,制約付きベンチマーク,ハイパーチューニングタスクに関するフレームワークを実証的に実証した。
論文 参考訳(メタデータ) (2024-10-22T10:56:52Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
機械学習における予測-Then-Forecast(PtO)パラダイムは、下流の意思決定品質を最大化することを目的としている。
本稿では,PtO法を拡張して,OWA(Nondifferentiable Ordered Weighted Averaging)の目的を最適化する。
この結果から,不確実性の下でのOWA関数の最適化とパラメトリック予測を効果的に統合できることが示唆された。
論文 参考訳(メタデータ) (2024-02-12T16:33:35Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Optimization and Optimizers for Adversarial Robustness [10.279287131070157]
本稿では,汎用的制約最適化解法と制約Foldingを融合した新しいフレームワークを提案する。
信頼性に関して、PWCFは、ソリューションの品質を評価するための定常度測定と実現可能性テストのソリューションを提供する。
さらに、損失、摂動モデル、最適化アルゴリズムの様々な組み合わせを用いて、これらの問題を解決するための解の異なるパターンについて検討する。
論文 参考訳(メタデータ) (2023-03-23T16:22:59Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
分子目的を最適化するための様々なZO最適化手法の有効性について検討する。
ZO符号に基づく勾配降下(ZO-signGD)の利点を示す。
本稿では,Guurcamol スイートから広く使用されているベンチマークタスクに対して,ZO 最適化手法の有効性を示す。
論文 参考訳(メタデータ) (2022-10-27T01:58:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
高価な関数評価を用いたマルチオブジェクト(MO)ブラックボックス最適化の問題点を考察する。
UeMOと呼ばれる新しい不確実性対応検索フレームワークを提案し、評価のための入力シーケンスを効率的に選択する。
論文 参考訳(メタデータ) (2022-04-12T16:50:48Z) - pysamoo: Surrogate-Assisted Multi-Objective Optimization in Python [7.8140593450932965]
pysamooは計算コストの高い最適化問題を解決するためのフレームワークである。
pysamooは、時間を要する評価機能に関わる問題に対処する複数の最適化方法を提供する。
pysamooの詳細については、Anyoptimization.com/projects/pysamooを参照してほしい。
論文 参考訳(メタデータ) (2022-04-12T14:55:57Z) - Optimizer Amalgamation [124.33523126363728]
私たちは、Amalgamationという新しい問題の研究を動機付けています。"Teacher"アマルガメーションのプールを、より強力な問題固有のパフォーマンスを持つ単一の"学生"にどのように組み合わせるべきなのでしょうか?
まず、勾配降下による解析のプールをアマルガメートする3つの異なるメカニズムを定義する。
また, プロセスの分散を低減するため, 目標を摂動させることでプロセスの安定化を図る。
論文 参考訳(メタデータ) (2022-03-12T16:07:57Z) - Global Optimization of Gaussian processes [52.77024349608834]
少数のデータポイントで学習したガウス過程を訓練した空間定式化を提案する。
このアプローチはまた、より小さく、計算的にもより安価なサブソルバを低いバウンディングに導く。
提案手法の順序の順序による時間収束を,総じて低減する。
論文 参考訳(メタデータ) (2020-05-21T20:59:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。