論文の概要: SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models
for Multi-Label Chest X-Ray Classification
- arxiv url: http://arxiv.org/abs/2311.07750v2
- Date: Mon, 20 Nov 2023 15:01:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-22 16:17:07.554102
- Title: SynthEnsemble: A Fusion of CNN, Vision Transformer, and Hybrid Models
for Multi-Label Chest X-Ray Classification
- Title(参考訳): SynthEnsemble: マルチラベル胸部X線分類のためのCNN, 視覚変換器, ハイブリッドモデルの融合
- Authors: S.M. Nabil Ashraf, Md. Adyelullahil Mamun, Hasnat Md. Abdullah, Md.
Golam Rabiul Alam
- Abstract要約: 我々は,異なる疾患に対応する胸部X線パターンの同定に深層学習技術を採用している。
最も優れた個人モデルはCoAtNetで、受信機の動作特性曲線(AUROC)の84.2%の領域を達成した。
- 参考スコア(独自算出の注目度): 0.6793286055326242
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Chest X-rays are widely used to diagnose thoracic diseases, but the lack of
detailed information about these abnormalities makes it challenging to develop
accurate automated diagnosis systems, which is crucial for early detection and
effective treatment. To address this challenge, we employed deep learning
techniques to identify patterns in chest X-rays that correspond to different
diseases. We conducted experiments on the "ChestX-ray14" dataset using various
pre-trained CNNs, transformers, hybrid(CNN+Transformer) models and classical
models. The best individual model was the CoAtNet, which achieved an area under
the receiver operating characteristic curve (AUROC) of 84.2%. By combining the
predictions of all trained models using a weighted average ensemble where the
weight of each model was determined using differential evolution, we further
improved the AUROC to 85.4%, outperforming other state-of-the-art methods in
this field. Our findings demonstrate the potential of deep learning techniques,
particularly ensemble deep learning, for improving the accuracy of automatic
diagnosis of thoracic diseases from chest X-rays.
- Abstract(参考訳): 胸部X線は胸部疾患の診断に広く用いられているが、これらの異常に関する詳細な情報がないため、早期発見や治療に欠かせない正確な自動診断システムの開発が困難である。
この課題に対処するため,異なる疾患に対応する胸部X線パターンの同定にディープラーニングを用いた。
各種cnn,トランスフォーマー,ハイブリッド(cnn+transformer)モデル,古典モデルを用いて"chestx-ray14"データセットの実験を行った。
最も優れた個人モデルはCoAtNetで、受信機の動作特性曲線(AUROC)の84.2%の領域を達成した。
重み付き平均アンサンブルを用いて、各モデルの重みが微分進化によって決定される全ての訓練モデルの予測を組み合わせることにより、AUROCを85.4%に改善し、この分野における他の最先端手法よりも優れていた。
胸部x線から胸部疾患の自動診断の精度を向上させるため,深層学習技術,特に深層学習の可能性が示唆された。
関連論文リスト
- DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
より単純な教師付き学習信号と自己教師付き学習信号で訓練した生成的アプローチが,現在のベンチマークにおいて優れた結果が得られることを示す。
The proposed Transformer-based generative network, named DDxT, autoregressive produce a set of possible pathology,, i. DDx, and predicts the real pathology using a neural network。
論文 参考訳(メタデータ) (2023-12-02T22:57:25Z) - CheX-Nomaly: Segmenting Lung Abnormalities from Chest Radiographs using
Machine Learning [0.0]
本稿では,二元化ローカライズU-netモデルであるCheX-nomalyを提案する。
対照的な学習手法を取り入れることで,異常局所化モデルの一般化性を大幅に向上できることを示す。
また,バウンディングボックスセグメンテーションにおけるU-nets性能を向上させるために,新たな損失手法を提案する。
論文 参考訳(メタデータ) (2023-11-03T08:27:57Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
関連疾患に対するラベル付きデータの不足は、正確な診断にとって大きな課題となる。
本稿では,診断エージェントの学習を指導するための事前知識を導入する,新しい深層強化学習フレームワークを提案する。
提案手法の性能はNIHX-ray 14とCheXpertデータセットを用いて実証した。
論文 参考訳(メタデータ) (2023-06-02T01:46:31Z) - Evolving Tsukamoto Neuro Fuzzy Model for Multiclass Covid 19
Classification with Chest X Ray Images [2.609784101826762]
本稿では,Covid 19の検出のための機械学習ベースのフレームワークを提案する。
提案モデルでは,コビッド19病の同定と識別に塚本神経ファジィ推論ネットワークを用いている。
提案したモデルは精度98.51%、感度98.35%、特異度98.08%、F1スコア98.17%を達成する。
論文 参考訳(メタデータ) (2023-05-17T17:55:45Z) - Improving Deep Facial Phenotyping for Ultra-rare Disorder Verification
Using Model Ensembles [52.77024349608834]
我々は、DCNNを最先端の顔認識手法であるiResNetとArcFaceに置き換える影響を分析する。
提案するアンサンブルモデルにより,目視と目視の両障害に対する最先端のパフォーマンスが達成される。
論文 参考訳(メタデータ) (2022-11-12T23:28:54Z) - A Deep Learning Technique using a Sequence of Follow Up X-Rays for
Disease classification [3.3345134768053635]
深層学習技術を用いて肺と心臓の疾患を予測する能力は多くの研究者の中心である。
最新の胸部X線像3例の追跡歴を含む患者のX線像は, 疾患分類において良好な成績を示すと推定された。
論文 参考訳(メタデータ) (2022-03-28T19:58:47Z) - The pitfalls of using open data to develop deep learning solutions for
COVID-19 detection in chest X-rays [64.02097860085202]
深層学習モデルは、胸部X線から新型コロナウイルスを識別するために開発された。
オープンソースデータのトレーニングやテストでは,結果は異例です。
データ分析とモデル評価は、人気のあるオープンソースデータセットであるCOVIDxが実際の臨床問題を代表していないことを示している。
論文 参考訳(メタデータ) (2021-09-14T10:59:11Z) - Covid-19 Detection from Chest X-ray and Patient Metadata using Graph
Convolutional Neural Networks [6.420262246029286]
本稿では,Covid-19肺炎のバイオマーカーを同定可能な新しいグラフ畳み込みニューラルネットワーク(GCN)を提案する。
提案手法は,データインスタンスとその特徴間の重要な関係知識をグラフ表現を用いて利用し,グラフデータ学習に畳み込みを適用する。
論文 参考訳(メタデータ) (2021-05-20T13:13:29Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
我々は、トレーニングデータと同じデータセットでテストすると、ディープラーニングモデルが、異なるソースからデータセットでテストされると、パフォーマンスが低下し始めることを示す。
対戦型トレーニング戦略を用いることで、ネットワークはソース不変表現を学習せざるを得ないことを示す。
論文 参考訳(メタデータ) (2020-08-04T07:41:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。