論文の概要: GreekT5: A Series of Greek Sequence-to-Sequence Models for News
Summarization
- arxiv url: http://arxiv.org/abs/2311.07767v1
- Date: Mon, 13 Nov 2023 21:33:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 16:05:20.533823
- Title: GreekT5: A Series of Greek Sequence-to-Sequence Models for News
Summarization
- Title(参考訳): greekt5:ニュース要約のための一連のギリシアのシーケンスからシーケンスへのモデル
- Authors: Nikolaos Giarelis, Charalampos Mastrokostas, Nikos Karacapilidis
- Abstract要約: 本稿では,ギリシャのニュース記事を対象とした新しいTSモデルを提案する。
提案したモデルは、ギリシャのBARTに対して同じデータセットで徹底的に評価された。
評価結果から, 提案したモデルのほとんどは, 様々な評価指標において, ギリシャ語BARTを著しく上回っていることが明らかとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Text summarization (TS) is a natural language processing (NLP) subtask
pertaining to the automatic formulation of a concise and coherent summary that
covers the major concepts and topics from one or multiple documents. Recent
advancements in deep learning have led to the development of abstractive
summarization transformer-based models, which outperform classical approaches.
In any case, research in this field focuses on high resource languages such as
English, while the corresponding work for low resource languages is still
underdeveloped. Taking the above into account, this paper proposes a series of
novel TS models for Greek news articles. The proposed models were thoroughly
evaluated on the same dataset against GreekBART, which is the state-of-the-art
model in Greek abstractive news summarization. Our evaluation results reveal
that most of the proposed models significantly outperform GreekBART on various
evaluation metrics. We make our evaluation code public, aiming to increase the
reproducibility of this work and facilitate future research in the field.
- Abstract(参考訳): text summarization (ts) は自然言語処理 (nlp) のサブタスクで、1つまたは複数の文書の主要な概念とトピックをカバーする簡潔でコヒーレントな要約の自動定式化に関するものである。
ディープラーニングの最近の進歩は、古典的アプローチを上回る抽象的要約トランスフォーマーモデルの開発につながった。
いずれにせよ、この分野の研究は英語のような高資源言語に焦点を当てているが、低資源言語に対する対応する研究はまだ未開発である。
以上のことを考慮し,ギリシャのニュース記事に対して,一連の新しいtsモデルを提案する。
提案したモデルは、ギリシャの抽象ニュース要約における最先端のモデルであるギリシャ語BARTに対して、同じデータセットで徹底的に評価された。
評価結果から,提案したモデルのほとんどは,様々な評価指標において,ギリシャ語BARTを著しく上回っていることが明らかとなった。
我々は,本研究の再現性を高め,今後の研究を促進することを目的として,評価コードを公開する。
関連論文リスト
- Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
本稿では,要約のための情報理論的目的に基づいて,強力な要約器を蒸留する新しい枠組みを提案する。
我々は,教師モデルとしてPythia-2.8Bから出発する。
我々は,ChatGPTと競合する5億8800万のパラメータしか持たないコンパクトだが強力な要約器に到達した。
論文 参考訳(メタデータ) (2024-03-20T17:42:08Z) - Exploring Precision and Recall to assess the quality and diversity of LLMs [82.21278402856079]
我々はtextscLlama-2 や textscMistral のような大規模言語モデル (LLM) のための新しい評価フレームワークを提案する。
このアプローチにより、コーパスの整合を必要とせず、生成したテキストの品質と多様性を微妙に評価できる。
論文 参考訳(メタデータ) (2024-02-16T13:53:26Z) - Controllable Topic-Focused Abstractive Summarization [57.8015120583044]
制御された抽象的な要約は、特定の側面をカバーするために、ソース記事の凝縮したバージョンを作成することに焦点を当てる。
本稿では,トピックに着目した要約を生成可能なトランスフォーマーアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-11-12T03:51:38Z) - GreekBART: The First Pretrained Greek Sequence-to-Sequence Model [13.429669368275318]
我々は,BARTベースアーキテクチャをベースとした最初のSeq2SeqモデルであるA GreekBARTを紹介し,大規模なギリシャ語コーパスを事前訓練する。
我々は,BART-random, Greek-BERT, XLM-Rを様々な識別課題で評価し,比較した。
論文 参考訳(メタデータ) (2023-04-03T10:48:51Z) - Large Language Models are Diverse Role-Players for Summarization
Evaluation [82.31575622685902]
文書要約の品質は、文法や正しさといった客観的な基準と、情報性、簡潔さ、魅力といった主観的な基準で人間の注釈者によって評価することができる。
BLUE/ROUGEのような自動評価手法のほとんどは、上記の次元を適切に捉えることができないかもしれない。
目的と主観の両面から生成されたテキストと参照テキストを比較し,総合的な評価フレームワークを提供するLLMに基づく新しい評価フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-27T10:40:59Z) - mFACE: Multilingual Summarization with Factual Consistency Evaluation [79.60172087719356]
抽象的な要約は、事前訓練された言語モデルと大規模データセットの可用性のおかげで、近年で新たな関心を集めている。
有望な結果にもかかわらず、現在のモデルはいまだに現実的に矛盾した要約を生み出すことに苦しむ。
事実整合性評価モデルを利用して、多言語要約を改善する。
論文 参考訳(メタデータ) (2022-12-20T19:52:41Z) - An Application of Pseudo-Log-Likelihoods to Natural Language Scoring [5.382454613390483]
比較的少ないパラメータとトレーニングステップを持つ言語モデルは、最近の大規模なデータセットでそれを上回るパフォーマンスを得ることができる。
二項選択タスクにおける常識推論のための絶対的最先端結果を生成する。
より小さなモデルの堅牢性は、構成性の観点から理解されるべきである。
論文 参考訳(メタデータ) (2022-01-23T22:00:54Z) - Multi-granular Legal Topic Classification on Greek Legislation [4.09134848993518]
ギリシア語で書かれた法律文書を分類する作業について研究する。
ギリシャの法律文書分類のタスクがオープンな研究プロジェクトで検討されたのはこれが初めてである。
論文 参考訳(メタデータ) (2021-09-30T17:43:00Z) - BERT: A Review of Applications in Natural Language Processing and
Understanding [0.0]
本稿では,最も人気のあるディープラーニングベースの言語モデルであるBERTの応用について述べる。
このレビューの準備では、科学界で最も注目を集めた過去数年間に発表された数十のオリジナルの科学論文のデータが体系化されました。
論文 参考訳(メタデータ) (2021-03-22T15:34:39Z) - Bengali Abstractive News Summarization(BANS): A Neural Attention
Approach [0.8793721044482612]
本稿では,エンコーダ・デコーダに着目したSeq2seqベースのLong Short-Term Memory(LSTM)ネットワークモデルを提案する。
提案システムでは,単語の長い列を人文や人文で生成する,局所的な注意に基づくモデルを構築している。
また,Bangla.bdnews24.com1から収集した19k以上の記事とそれに対応する人文要約のデータセットも作成した。
論文 参考訳(メタデータ) (2020-12-03T08:17:31Z) - Topic Adaptation and Prototype Encoding for Few-Shot Visual Storytelling [81.33107307509718]
トピック間一般化の能力をモデル化するためのトピック適応型ストーリーテラを提案する。
また,アトピー内導出能力のモデル化を目的とした符号化手法の試作も提案する。
実験結果から,トピック適応とプロトタイプ符号化構造が相互に利益をもたらすことが明らかとなった。
論文 参考訳(メタデータ) (2020-08-11T03:55:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。