論文の概要: Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process
- arxiv url: http://arxiv.org/abs/2311.07821v1
- Date: Tue, 14 Nov 2023 00:45:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 15:55:51.993005
- Title: Statistical Parameterized Physics-Based Machine Learning Digital Twin
Models for Laser Powder Bed Fusion Process
- Title(参考訳): レーザー粉体融合プロセスのための統計的パラメータ化物理に基づく機械学習デジタル双晶モデル
- Authors: Yangfan Li, Satyajit Mojumder, Ye Lu, Abdullah Al Amin, Jiachen Guo,
Xiaoyu Xie, Wei Chen, Gregory J. Wagner, Jian Cao, Wing Kam Liu
- Abstract要約: デジタルツイン(Digital twin, DT)は、物理プロセス、製品、および/またはシステムの仮想表現である。
本稿では, LPBF金属添加物製造プロセスの統計的予測のためのパラメータ化物理ベースのディジタルツイン (PPB-DT) を提案する。
我々は,溶融プール地形の予測,モニタリング,制御を行うために,機械学習ベースのディジタルツイン(PPB-ML-DT)モデルを訓練した。
- 参考スコア(独自算出の注目度): 9.182594748320948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A digital twin (DT) is a virtual representation of physical process, products
and/or systems that requires a high-fidelity computational model for continuous
update through the integration of sensor data and user input. In the context of
laser powder bed fusion (LPBF) additive manufacturing, a digital twin of the
manufacturing process can offer predictions for the produced parts, diagnostics
for manufacturing defects, as well as control capabilities. This paper
introduces a parameterized physics-based digital twin (PPB-DT) for the
statistical predictions of LPBF metal additive manufacturing process. We
accomplish this by creating a high-fidelity computational model that accurately
represents the melt pool phenomena and subsequently calibrating and validating
it through controlled experiments. In PPB-DT, a mechanistic reduced-order
method-driven stochastic calibration process is introduced, which enables the
statistical predictions of the melt pool geometries and the identification of
defects such as lack-of-fusion porosity and surface roughness, specifically for
diagnostic applications. Leveraging data derived from this physics-based model
and experiments, we have trained a machine learning-based digital twin
(PPB-ML-DT) model for predicting, monitoring, and controlling melt pool
geometries. These proposed digital twin models can be employed for predictions,
control, optimization, and quality assurance within the LPBF process,
ultimately expediting product development and certification in LPBF-based metal
additive manufacturing.
- Abstract(参考訳): デジタルツイン(Digital twin, DT)は、センサーデータとユーザ入力を統合することで、連続的な更新のために高忠実度計算モデルを必要とする物理プロセス、製品、および/またはシステムの仮想表現である。
レーザー粉末層融合(LPBF)添加物製造の文脈において、製造工程のデジタルツインは、製造部品の予測、製造欠陥の診断、および制御能力を提供することができる。
本稿では, LPBF金属添加物製造プロセスの統計的予測のためのパラメータ化物理ベースのディジタルツイン (PPB-DT) を提案する。
本研究では, 溶融プール現象を正確に表現した高忠実度計算モデルを作成し, 制御実験により校正・検証する。
ppb-dtでは,メルトプールジオメトリの統計的予測と,特に表面粗さの欠如などの欠陥の同定を可能にする,機械的な還元順序法に基づく確率的校正法が導入された。
この物理モデルと実験から得られたデータを利用して, 融液プール地形の予測, 監視, 制御のために, 機械学習に基づくデジタルツイン(ppb-ml-dt)モデルを訓練した。
これらのディジタルツインモデルは、LPBFプロセス内の予測、制御、最適化、品質保証に使用することができ、最終的にLPBFベースの金属添加物製造における製品開発と認定を迅速化する。
関連論文リスト
- Investigation on domain adaptation of additive manufacturing monitoring systems to enhance digital twin reusability [12.425166883814153]
機械学習(ML)ベースのモデリングを使用したデジタルツイン(DT)は、AMプロセスの監視と制御のためにデプロイできる。
メルトプールは、プロセス監視において最もよく見られる物理現象の1つである。
本稿では,AM DTの再利用性を高めるため,異なるAM設定間の知識伝達パイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-19T13:54:01Z) - Sparse Attention-driven Quality Prediction for Production Process Optimization in Digital Twins [53.70191138561039]
データ駆動方式で運用ロジックを符号化することで,生産ラインのディジタルツインをデプロイすることを提案する。
我々は,自己注意型時間畳み込みニューラルネットワークに基づく生産プロセスの品質予測モデルを採用する。
本手法は,本手法により,仮想及び実生産ライン間のシームレスな統合を促進できることを示す。
論文 参考訳(メタデータ) (2024-05-20T09:28:23Z) - Deep Neural Operator Enabled Digital Twin Modeling for Additive Manufacturing [9.639126204112937]
デジタルツイン(DT)は、現実世界の物理的プロセスの仮想ツインとして振る舞う。
L-PBFプロセスの閉ループフィードバック制御のためのディープ・ニューラル演算子を用いたDTの計算フレームワークを提案する。
開発したDTは、AMプロセスのガイドと高品質製造の促進を目的としている。
論文 参考訳(メタデータ) (2024-05-13T03:53:46Z) - Digital Twin Calibration for Biological System-of-Systems: Cell Culture Manufacturing Process [3.0790370651488983]
細胞培養プロセスのマルチスケール力学モデル(バイオシステム)について考察する。
サブモデルで構成されたモジュラー設計のこのモデルは、さまざまな生産プロセスにまたがるデータの統合を可能にします。
そこで我々は,Bio-SoSディジタルツインを校正するために,モデル予測の平均2乗誤差を評価し,個々のサブモデルのパラメータ推定誤差がディジタルツインの予測精度に与える影響を定量化する計算手法を開発した。
論文 参考訳(メタデータ) (2024-05-07T00:22:13Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - Enhanced multi-fidelity modelling for digital twin and uncertainty
quantification [0.0]
データ駆動モデルは、リアルタイムのアップデートと予測を可能にするデジタルツインにおいて重要な役割を果たす。
利用可能なデータの忠実さと正確なセンサーデータの不足は、しばしば代理モデルの効率的な学習を妨げる。
本稿では,ロバストなマルチフィデリティ・サロゲートモデルの開発から始まる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-26T05:58:17Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
地下貯水池の過圧化を避けることは、CO2の沈殿や排水の注入といった用途に欠かせない。
地中における複雑な不均一性のため, 噴射・抽出制御による圧力管理は困難である。
過圧化防止のための流体抽出速度を決定するために、フル物理モデルと機械学習を用いた微分可能プログラミングを用いる。
論文 参考訳(メタデータ) (2022-06-21T20:38:13Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Predictive modeling approaches in laser-based material processing [59.04160452043105]
本研究の目的は,レーザー加工が材料構造に及ぼす影響を自動予測することである。
その焦点は、統計的および機械学習の代表的なアルゴリズムのパフォーマンスに焦点を当てている。
結果は、材料設計、テスト、生産コストを削減するための体系的な方法論の基礎を設定することができる。
論文 参考訳(メタデータ) (2020-06-13T17:28:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。