論文の概要: Brain-Driven Representation Learning Based on Diffusion Model
- arxiv url: http://arxiv.org/abs/2311.07925v1
- Date: Tue, 14 Nov 2023 05:59:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 15:32:12.211765
- Title: Brain-Driven Representation Learning Based on Diffusion Model
- Title(参考訳): 拡散モデルに基づく脳駆動表現学習
- Authors: Soowon Kim, Seo-Hyun Lee, Young-Eun Lee, Ji-Won Lee, Ji-Ha Park,
Seong-Whan Lee
- Abstract要約: 本研究では,拡散確率モデル(DDPM)について検討した。
条件付きオートエンコーダとDDPMを併用することで、我々の新しいアプローチは従来の機械学習アルゴリズムよりもかなり優れています。
本研究は,音声関連脳波信号解析のための高度な計算手法として,DDPMの可能性を強調した。
- 参考スコア(独自算出の注目度): 25.375490061512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interpreting EEG signals linked to spoken language presents a complex
challenge, given the data's intricate temporal and spatial attributes, as well
as the various noise factors. Denoising diffusion probabilistic models (DDPMs),
which have recently gained prominence in diverse areas for their capabilities
in representation learning, are explored in our research as a means to address
this issue. Using DDPMs in conjunction with a conditional autoencoder, our new
approach considerably outperforms traditional machine learning algorithms and
established baseline models in accuracy. Our results highlight the potential of
DDPMs as a sophisticated computational method for the analysis of
speech-related EEG signals. This could lead to significant advances in
brain-computer interfaces tailored for spoken communication.
- Abstract(参考訳): 音声言語に関連付けられた脳波信号の解釈は、データの複雑な時間的・空間的特性や様々な雑音因子を考えると複雑な課題である。
近年,様々な分野において,表現学習の能力について注目されている拡散確率モデル(ddpms)について,この問題に対処する手段として検討した。
条件付きオートエンコーダとDDPMを併用することにより、従来の機械学習アルゴリズムとベースラインモデルの精度を大幅に向上する。
本研究は,音声関連脳波信号解析のための高度な計算手法として,DDPMの可能性を強調した。
これにより、音声通信に適した脳-コンピュータインタフェースが大幅に進歩する可能性がある。
関連論文リスト
- EEG-Based Speech Decoding: A Novel Approach Using Multi-Kernel Ensemble Diffusion Models [0.0]
本稿では脳波を用いた音声分類のためのアンサンブル学習フレームワークを提案する。
アンサンブルは、51、101、201のカーネルサイズを持つ3つのモデルで構成されている。
その結果,提案手法は個々のモデルや既存の最先端技術よりもはるかに優れていることがわかった。
論文 参考訳(メタデータ) (2024-11-14T09:23:58Z) - Towards Linguistic Neural Representation Learning and Sentence Retrieval from Electroencephalogram Recordings [27.418738450536047]
脳波信号を文に変換するための2ステップパイプラインを提案する。
まず,自然読解中に記録された脳波データから単語レベルの意味情報を学習できることを確認する。
脳波エンコーダからの予測に基づいて文章を検索するために,学習不要な検索手法を用いる。
論文 参考訳(メタデータ) (2024-08-08T03:40:25Z) - EEG decoding with conditional identification information [7.873458431535408]
脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
論文 参考訳(メタデータ) (2024-03-21T13:38:59Z) - Diffusion Model as Representation Learner [86.09969334071478]
Diffusion Probabilistic Models (DPMs) は、最近、様々な生成タスクにおいて顕著な結果を示した。
本稿では,DPMが獲得した知識を認識タスクに活用する新しい知識伝達手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T00:38:39Z) - Diff-E: Diffusion-based Learning for Decoding Imagined Speech EEG [17.96977778655143]
本稿では,DDPMとDiff-Eという条件付きオートエンコーダを用いた脳波信号のデコード手法を提案する。
その結果,Diff-Eは従来の機械学習手法やベースラインモデルと比較して脳波信号の復号精度を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2023-07-26T07:12:39Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
機械学習の中核的な問題は、複雑なデータに対するモデル予測のための表現力のある潜在変数を学習することである。
本稿では,表現性を向上し,部分的解釈を提供し,特定のアプリケーションに限定されないアプローチを開発する。
論文 参考訳(メタデータ) (2022-10-07T17:56:53Z) - End-to-End Active Speaker Detection [58.7097258722291]
本稿では,特徴学習と文脈予測を共同で学習するエンド・ツー・エンドのトレーニングネットワークを提案する。
また、時間間グラフニューラルネットワーク(iGNN)ブロックを導入し、ASD問題における主要なコンテキストのソースに応じてメッセージパッシングを分割する。
実験により、iGNNブロックからの集約された特徴はASDにより適しており、その結果、最先端のアートパフォーマンスが得られることが示された。
論文 参考訳(メタデータ) (2022-03-27T08:55:28Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
本稿では,学習可能なフィルタと事前決定された特徴抽出モジュールからなる新しい識別可能なEEGデコーディングパイプラインを提案する。
我々は,SEEDデータセットおよび前例のない大きさの新たな脳波データセット上で,脳波信号からの感情認識に向けたモデルの有用性を実証する。
発見された特徴は、以前の神経科学の研究と一致し、音楽聴取中の左右の時間領域間の機能的接続プロファイルの顕著な相違など、新たな洞察を提供する。
論文 参考訳(メタデータ) (2021-10-19T14:22:04Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Correlation based Multi-phasal models for improved imagined speech EEG
recognition [22.196642357767338]
本研究の目的は,特定の音声単位に対応する音声の動きを,話し,想像,実行しながら記録された多相脳波データに含まれる並列情報から利益を得ることである。
ニューラルネットワークを用いた二相共通表現学習モジュールは、解析フェーズと支援フェーズ間の相関をモデル化する。
提案手法は復号化時の多相データの非可利用性をさらに扱う。
論文 参考訳(メタデータ) (2020-11-04T09:39:53Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
音声言語理解(SLU)モデルの訓練は、しばしばデータ不足の問題に直面している。
我々は,事前学習言語モデルを用いたデータ拡張手法を提案し,生成した発話の変動性と精度を向上した。
論文 参考訳(メタデータ) (2020-04-29T04:07:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。