論文の概要: EEG decoding with conditional identification information
- arxiv url: http://arxiv.org/abs/2403.15489v1
- Date: Thu, 21 Mar 2024 13:38:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-26 22:32:02.866063
- Title: EEG decoding with conditional identification information
- Title(参考訳): 条件付き識別情報を用いた脳波復号
- Authors: Pengfei Sun, Jorg De Winne, Paul Devos, Dick Botteldooren,
- Abstract要約: 脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
- 参考スコア(独自算出の注目度): 7.873458431535408
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Decoding EEG signals is crucial for unraveling human brain and advancing brain-computer interfaces. Traditional machine learning algorithms have been hindered by the high noise levels and inherent inter-person variations in EEG signals. Recent advances in deep neural networks (DNNs) have shown promise, owing to their advanced nonlinear modeling capabilities. However, DNN still faces challenge in decoding EEG samples of unseen individuals. To address this, this paper introduces a novel approach by incorporating the conditional identification information of each individual into the neural network, thereby enhancing model representation through the synergistic interaction of EEG and personal traits. We test our model on the WithMe dataset and demonstrated that the inclusion of these identifiers substantially boosts accuracy for both subjects in the training set and unseen subjects. This enhancement suggests promising potential for improving for EEG interpretability and understanding of relevant identification features.
- Abstract(参考訳): 脳波信号を復号することは、人間の脳を解き放ち、脳とコンピュータのインターフェースを進化させるのに不可欠である。
従来の機械学習アルゴリズムは、高ノイズレベルと脳波信号の個人間変動によって妨げられている。
ディープニューラルネットワーク(DNN)の最近の進歩は、その高度な非線形モデリング能力のために、将来性を示している。
しかし、DNNは未確認個体の脳波サンプルの解読に依然として課題に直面している。
そこで本稿では,脳波と個人特性の相乗的相互作用を通じて,各個体の条件付き識別情報をニューラルネットワークに組み込むことにより,モデル表現を向上させる手法を提案する。
WithMeデータセット上でモデルをテストし、これらの識別子を組み込むことで、トレーニングセットと見当たらない被験者の両方の精度が大幅に向上することを示した。
この強化は、脳波の解釈可能性の向上と関連する識別機能の理解に有望な可能性を示唆している。
関連論文リスト
- CSLP-AE: A Contrastive Split-Latent Permutation Autoencoder Framework
for Zero-Shot Electroencephalography Signal Conversion [49.1574468325115]
脳波分析の鍵となる目的は、基礎となる神経活動(コンテンツ)を抽出し、個体の変動(スタイル)を考慮することである。
近年の音声変換技術の発展に触発されて,脳波変換を直接最適化するCSLP-AEフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-13T22:46:43Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
本稿では,限られたラベルを持つ脳波から効果的な表現を抽出する知識駆動型クロスビューコントラスト学習フレームワーク(KDC2)を提案する。
KDC2法は脳波信号の頭皮と神経のビューを生成し、脳活動の内部および外部の表現をシミュレートする。
ニューラル情報整合性理論に基づく事前のニューラル知識をモデル化することにより、提案手法は不変かつ相補的なニューラル知識を抽出し、複合表現を生成する。
論文 参考訳(メタデータ) (2023-09-21T08:53:51Z) - Evaluating the structure of cognitive tasks with transfer learning [67.22168759751541]
本研究では,脳波復号処理における深層学習表現の伝達可能性について検討した。
最近リリースされた2つのEEGデータセット上で、最先端デコードモデルを用いて広範な実験を行う。
論文 参考訳(メタデータ) (2023-07-28T14:51:09Z) - MAtt: A Manifold Attention Network for EEG Decoding [0.966840768820136]
多様体注意ネットワーク(mAtt)を特徴とする脳波復号のための新しい幾何学的学習(GDL)モデルを提案する。
時間同期EEGデータセットと非同期EEGデータセットの両方におけるMAttの評価は、一般的なEEGデコーディングのための他の主要なDLメソッドよりも優れていることを示唆している。
論文 参考訳(メタデータ) (2022-10-05T02:26:31Z) - EEG-ITNet: An Explainable Inception Temporal Convolutional Network for
Motor Imagery Classification [0.5616884466478884]
我々はEEG-ITNetと呼ばれるエンドツーエンドのディープラーニングアーキテクチャを提案する。
本モデルでは,多チャンネル脳波信号からスペクトル,空間,時間情報を抽出することができる。
EEG-ITNetは、異なるシナリオにおける分類精度を最大5.9%改善する。
論文 参考訳(メタデータ) (2022-04-14T13:18:43Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
本稿では,音声とテキストのモダリティから,伝達学習モデルと微調整モデルとを融合したニューラルネットワークによる感情認識フレームワークを提案する。
本稿では,対話型感情的モーションキャプチャー・データセットにおけるマルチモーダル・アプローチの有効性を評価する。
論文 参考訳(メタデータ) (2022-02-16T00:23:42Z) - GANSER: A Self-supervised Data Augmentation Framework for EEG-based
Emotion Recognition [15.812231441367022]
本稿では,GANSER(Generative Adversarial Network-based Self-supervised Data Augmentation)という新しいデータ拡張フレームワークを提案する。
脳波に基づく感情認識のための自己教師型学習と対人訓練を併用する最初の試みとして、提案フレームワークは高品質な模擬脳波サンプルを生成することができる。
変換関数は、脳波信号の一部を隠蔽し、生成元に残りの部分に基づいて潜在的な脳波信号を合成させる。
論文 参考訳(メタデータ) (2021-09-07T14:42:55Z) - EEG-based Cross-Subject Driver Drowsiness Recognition with an
Interpretable Convolutional Neural Network [0.0]
我々は,新しい畳み込みニューラルネットワークと解釈手法を組み合わせることで,分類の重要な特徴のサンプルワイズ分析を可能にする。
その結果,11名の被験者に対して平均78.35%の精度が得られた。
論文 参考訳(メタデータ) (2021-05-30T14:47:20Z) - Emotional EEG Classification using Connectivity Features and
Convolutional Neural Networks [81.74442855155843]
CNNと脳のつながりを利用した新しい分類システムを導入し,その効果を感情映像分類により検証する。
対象映像の感情的特性に関連する脳接続の集中度は分類性能と相関する。
論文 参考訳(メタデータ) (2021-01-18T13:28:08Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
脳波感情認識のための伝達型注目ニューラルネットワーク(TANN)を提案する。
TANNは、伝達可能な脳波領域のデータとサンプルを適応的に強調することにより、感情的な識別情報を学習する。
これは、複数の脳領域レベル判別器と1つのサンプルレベル判別器の出力を測定することで実現できる。
論文 参考訳(メタデータ) (2020-09-21T02:42:30Z) - Human brain activity for machine attention [8.673635963837532]
我々は脳波(EEG)という神経科学データを初めて活用し、人間の脳の言語処理について神経の注意モデルに知らせる。
我々は、理論上動機付けられた収穫と無作為な森林分枝を組み合わせることで、機械の注意を監督する脳波の特徴を見つける手法を考案した。
これらの特徴を関係分類の注意を規則化するために応用し、脳波が強い基準線よりも情報的であることを示す。
論文 参考訳(メタデータ) (2020-06-09T08:39:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。