Towards Improving Robustness Against Common Corruptions in Object
Detectors Using Adversarial Contrastive Learning
- URL: http://arxiv.org/abs/2311.07928v1
- Date: Tue, 14 Nov 2023 06:13:52 GMT
- Title: Towards Improving Robustness Against Common Corruptions in Object
Detectors Using Adversarial Contrastive Learning
- Authors: Shashank Kotyan and Danilo Vasconcellos Vargas
- Abstract summary: This paper proposes an innovative adversarial contrastive learning framework to enhance neural network robustness simultaneously against adversarial attacks and common corruptions.
By focusing on improving performance under adversarial and real-world conditions, our approach aims to bolster the robustness of neural networks in safety-critical applications.
- Score: 10.27974860479791
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural networks have revolutionized various domains, exhibiting remarkable
accuracy in tasks like natural language processing and computer vision.
However, their vulnerability to slight alterations in input samples poses
challenges, particularly in safety-critical applications like autonomous
driving. Current approaches, such as introducing distortions during training,
fall short in addressing unforeseen corruptions. This paper proposes an
innovative adversarial contrastive learning framework to enhance neural network
robustness simultaneously against adversarial attacks and common corruptions.
By generating instance-wise adversarial examples and optimizing contrastive
loss, our method fosters representations that resist adversarial perturbations
and remain robust in real-world scenarios. Subsequent contrastive learning then
strengthens the similarity between clean samples and their adversarial
counterparts, fostering representations resistant to both adversarial attacks
and common distortions. By focusing on improving performance under adversarial
and real-world conditions, our approach aims to bolster the robustness of
neural networks in safety-critical applications, such as autonomous vehicles
navigating unpredictable weather conditions. We anticipate that this framework
will contribute to advancing the reliability of neural networks in challenging
environments, facilitating their widespread adoption in mission-critical
scenarios.
Related papers
- Enhancing Adversarial Robustness via Uncertainty-Aware Distributional Adversarial Training [43.766504246864045]
We propose a novel uncertainty-aware distributional adversarial training method.
Our approach achieves state-of-the-art adversarial robustness and maintains natural performance.
arXiv Detail & Related papers (2024-11-05T07:26:24Z) - Protecting Feed-Forward Networks from Adversarial Attacks Using Predictive Coding [0.20718016474717196]
An adversarial example is a modified input image designed to cause a Machine Learning (ML) model to make a mistake.
This study presents a practical and effective solution -- using predictive coding networks (PCnets) as an auxiliary step for adversarial defence.
arXiv Detail & Related papers (2024-10-31T21:38:05Z) - Few-Shot Adversarial Prompt Learning on Vision-Language Models [62.50622628004134]
The vulnerability of deep neural networks to imperceptible adversarial perturbations has attracted widespread attention.
Previous efforts achieved zero-shot adversarial robustness by aligning adversarial visual features with text supervision.
We propose a few-shot adversarial prompt framework where adapting input sequences with limited data makes significant adversarial robustness improvement.
arXiv Detail & Related papers (2024-03-21T18:28:43Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
adversarial examples can manipulate machine learning models into making erroneous predictions.
The transferability of adversarial examples enables black-box attacks which circumvent the need for detailed knowledge of the target model.
This survey explores the landscape of the adversarial transferability of adversarial examples.
arXiv Detail & Related papers (2023-10-26T17:45:26Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
Most robust training techniques aim to improve model accuracy on perturbed inputs.
As an alternate form of robustness, we aim to reduce the severity of mistakes made by neural networks in challenging conditions.
We leverage current adversarial training methods to generate targeted adversarial attacks during the training process.
Results demonstrate that our approach performs better with respect to mistake severity compared to standard and adversarially trained models.
arXiv Detail & Related papers (2022-11-21T22:01:36Z) - Improving Adversarial Robustness to Sensitivity and Invariance Attacks
with Deep Metric Learning [80.21709045433096]
A standard method in adversarial robustness assumes a framework to defend against samples crafted by minimally perturbing a sample.
We use metric learning to frame adversarial regularization as an optimal transport problem.
Our preliminary results indicate that regularizing over invariant perturbations in our framework improves both invariant and sensitivity defense.
arXiv Detail & Related papers (2022-11-04T13:54:02Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Demotivate adversarial defense in remote sensing [0.0]
We study adversarial retraining and adversarial regularization as adversarial defenses to this purpose.
We show through several experiments on public remote sensing datasets that adversarial robustness seems uncorrelated to geographic and over-fitting robustness.
arXiv Detail & Related papers (2021-05-28T15:04:37Z) - Combating Adversaries with Anti-Adversaries [118.70141983415445]
In particular, our layer generates an input perturbation in the opposite direction of the adversarial one.
We verify the effectiveness of our approach by combining our layer with both nominally and robustly trained models.
Our anti-adversary layer significantly enhances model robustness while coming at no cost on clean accuracy.
arXiv Detail & Related papers (2021-03-26T09:36:59Z) - Improving Adversarial Robustness by Enforcing Local and Global
Compactness [19.8818435601131]
Adversary training is the most successful method that consistently resists a wide range of attacks.
We propose the Adversary Divergence Reduction Network which enforces local/global compactness and the clustering assumption.
The experimental results demonstrate that augmenting adversarial training with our proposed components can further improve the robustness of the network.
arXiv Detail & Related papers (2020-07-10T00:43:06Z) - Bridging Mode Connectivity in Loss Landscapes and Adversarial Robustness [97.67477497115163]
We use mode connectivity to study the adversarial robustness of deep neural networks.
Our experiments cover various types of adversarial attacks applied to different network architectures and datasets.
Our results suggest that mode connectivity offers a holistic tool and practical means for evaluating and improving adversarial robustness.
arXiv Detail & Related papers (2020-04-30T19:12:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.