論文の概要: Robust Learning Based Condition Diagnosis Method for Distribution
Network Switchgear
- arxiv url: http://arxiv.org/abs/2311.07956v2
- Date: Thu, 7 Dec 2023 00:17:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-08 17:59:32.465042
- Title: Robust Learning Based Condition Diagnosis Method for Distribution
Network Switchgear
- Title(参考訳): 分散ネットワークスイッチギアのロバスト学習に基づく条件診断法
- Authors: Wenxi Zhang, Zhe Li, Weixi Li, Weisi Ma, Xinyi Chen, Sizhe Li
- Abstract要約: 本稿では,分散ネットワークスイッチギアの状態を診断するための頑健な学習手法を提案する。
本手法は, 環境データ, 温度測定, スイッチ位置, モータ動作, 絶縁条件, 局所放電情報を含む拡張特徴ベクトルを含む。
- 参考スコア(独自算出の注目度): 8.515214508489558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a robust, learning-based method for diagnosing the
state of distribution network switchgear, which is crucial for maintaining the
power quality for end users. Traditional diagnostic models often rely heavily
on expert knowledge and lack robustness. To address this, our method
incorporates an expanded feature vector that includes environmental data,
temperature readings, switch position, motor operation, insulation conditions,
and local discharge information. We tackle the issue of high dimensionality
through feature mapping. The method introduces a decision radius to categorize
unlabeled samples and updates the model parameters using a combination of
supervised and unsupervised loss, along with a consistency regularization
function. This approach ensures robust learning even with a limited number of
labeled samples. Comparative analysis demonstrates that this method
significantly outperforms existing models in both accuracy and robustness.
- Abstract(参考訳): 本稿では,エンドユーザの電力品質維持に不可欠である分散ネットワークスイッチギアの状態を診断するための,堅牢で学習的な手法を提案する。
従来の診断モデルは専門家の知識に大きく依存し、堅牢性に欠けることが多い。
そこで本手法では, 環境データ, 温度測定, スイッチ位置, モータ動作, 絶縁条件, 局所放電情報を含む拡張特徴ベクトルを組み込んだ。
我々は特徴マッピングを通して高次元の問題に取り組む。
本手法では,無ラベルサンプルを分類する決定半径を導入し,教師付き損失と教師なし損失を組み合わせたモデルパラメータを整合正則化関数とともに更新する。
このアプローチは、限られた数のラベル付きサンプルでも堅牢な学習を可能にする。
比較分析により、この手法が既存のモデルよりも精度と頑健性の両方において著しく優れていることが示される。
関連論文リスト
- Condition Monitoring with Incomplete Data: An Integrated Variational Autoencoder and Distance Metric Framework [2.7898966850590625]
本稿では,未確認データに対する故障検出と条件モニタリングのための新しい手法を提案する。
我々は変分オートエンコーダを用いて、以前に見られた新しい未知条件の確率分布をキャプチャする。
故障は、健康指標のしきい値を確立することで検出され、そのモデルが重大で見えない断層を高い精度で識別することができる。
論文 参考訳(メタデータ) (2024-04-08T22:20:23Z) - Unified Uncertainty Estimation for Cognitive Diagnosis Models [70.46998436898205]
本稿では,幅広い認知診断モデルに対する統一的不確実性推定手法を提案する。
診断パラメータの不確かさをデータ・アスペクトとモデル・アスペクトに分解する。
本手法は有効であり,認知診断の不確実性に関する有用な知見を提供することができる。
論文 参考訳(メタデータ) (2024-03-09T13:48:20Z) - Inadequacy of common stochastic neural networks for reliable clinical
decision support [0.4262974002462632]
医療意思決定におけるAIの普及は、倫理的および安全性に関する懸念から、いまだに妨げられている。
しかし、一般的なディープラーニングアプローチは、データシフトによる過信傾向にある。
本研究は臨床応用における信頼性について考察する。
論文 参考訳(メタデータ) (2024-01-24T18:49:30Z) - Active Foundational Models for Fault Diagnosis of Electrical Motors [0.5999777817331317]
電気モーターの故障検出と診断は、産業システムの安全かつ信頼性の高い運転を保証する上で最も重要である。
マシン故障診断のための既存のデータ駆動ディープラーニングアプローチは、大量のラベル付きサンプルに大きく依存している。
ラベル付きサンプルを少ない量で活用する基礎モデルに基づくアクティブラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-11-27T03:25:12Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Training on Test Data with Bayesian Adaptation for Covariate Shift [96.3250517412545]
ディープニューラルネットワークは、信頼できない不確実性推定で不正確な予測を行うことが多い。
分布シフトの下でのラベルなし入力とモデルパラメータとの明確に定義された関係を提供するベイズモデルを導出する。
本手法は精度と不確実性の両方を向上することを示す。
論文 参考訳(メタデータ) (2021-09-27T01:09:08Z) - Probabilistic Bearing Fault Diagnosis Using Gaussian Process with
Tailored Feature Extraction [10.064000794573756]
転がり軸受は、過酷な環境下での長時間の運転により、様々な障害にさらされる。
現在の深層学習法は, 決定論的分類の形で軸受断層診断を行う。
本研究では,予測の不確実性を考慮した確率的故障診断フレームワークを開発した。
論文 参考訳(メタデータ) (2021-09-19T18:34:29Z) - Dynamic Bayesian Approach for decision-making in Ego-Things [8.577234269009042]
本稿では,マルチセンサデータと特徴選択に基づく動的システムの異常検出手法を提案する。
成長型ニューラルガス(GNG)は、マルチセンサーデータを一連のノードにクラスタリングするために使用される。
本手法は状態推定と異常検出にマルコフジャンプ粒子フィルタ(MJPF)を用いる。
論文 参考訳(メタデータ) (2020-10-28T11:38:51Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Rectified Meta-Learning from Noisy Labels for Robust Image-based Plant
Disease Diagnosis [64.82680813427054]
植物病は食料安全保障と作物生産に対する主要な脅威の1つである。
1つの一般的なアプローチは、葉画像分類タスクとしてこの問題を変換し、強力な畳み込みニューラルネットワーク(CNN)によって対処できる。
本稿では,正規化メタ学習モジュールを共通CNNパラダイムに組み込んだ新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-17T09:51:30Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。