論文の概要: Comparison of two data fusion approaches for land use classification
- arxiv url: http://arxiv.org/abs/2311.07967v2
- Date: Thu, 21 Dec 2023 09:08:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 17:59:32.914206
- Title: Comparison of two data fusion approaches for land use classification
- Title(参考訳): 土地利用分類のための2つのデータ融合手法の比較
- Authors: Martin Cubaud (LaSTIG), Arnaud Le Bris (LaSTIG), Laurence Jolivet
(LaSTIG), Ana-Maria Olteanu-Raimond (LaSTIG)
- Abstract要約: 本研究では,土地利用分類の文脈において,複数の空間データソースを組み合わせるための2つのアプローチを比較した。
これらの手法は、フランス南西部のゲルス県にある土地利用データに適用される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate land use maps, describing the territory from an anthropic
utilisation point of view, are useful tools for land management and planning.
To produce them, the use of optical images alone remains limited. It is
therefore necessary to make use of several heterogeneous sources, each carrying
complementary or contradictory information due to their imperfections or their
different specifications. This study compares two different approaches i.e. a
pre-classification and a post-classification fusion approach for combining
several sources of spatial data in the context of land use classification. The
approaches are applied on authoritative land use data located in the Gers
department in the southwest of France. Pre-classification fusion, while not
explicitly modeling imperfections, has the best final results, reaching an
overall accuracy of 97% and a macro-mean F1 score of 88%.
- Abstract(参考訳): 正確な土地利用地図は、人為的利用の観点から、土地管理と計画に有用なツールである。
製造にあたっては、光学画像のみの使用は限られている。
したがって、不完全性や異なる仕様のために相補的あるいは矛盾する情報を持つ異種情報源を複数使用する必要がある。
本研究は,土地利用分類の文脈において,複数の空間データソースを組み合わせた事前分類と後分類融合の2つのアプローチを比較した。
これらのアプローチは、フランス南西部のガーズ県にある権威ある土地利用データに適用される。
分類前の融合は、明確に不完全さをモデル化していないが、最終的な結果が最高で、全体の精度は97%、マクロ平均f1スコアは88%に達する。
関連論文リスト
- Evaluation of Deep Learning Semantic Segmentation for Land Cover Mapping on Multispectral, Hyperspectral and High Spatial Aerial Imagery [0.0]
気候変動の台頭で、土地被覆マッピングは環境モニタリングにおいて緊急に必要となってきた。
本研究では,Unet,Linknet,FPN,PSPnetなどのセマンティックセグメンテーション手法を用いて植生や水などの分類を行った。
LinkNetモデルは、すべてのデータセットで0.92の精度でIoUで取得した。
論文 参考訳(メタデータ) (2024-06-20T11:40:12Z) - SatSynth: Augmenting Image-Mask Pairs through Diffusion Models for Aerial Semantic Segmentation [69.42764583465508]
我々は,地球観測における注釈付きデータの不足に対処するために,生成的画像拡散の可能性を探る。
我々の知る限りでは、衛星セグメンテーションのための画像と対応するマスクの両方を最初に生成する。
論文 参考訳(メタデータ) (2024-03-25T10:30:22Z) - Improving Heterogeneous Model Reuse by Density Estimation [105.97036205113258]
本稿では,異なる参加者の個人データを用いてモデルを学習することを目的とした多人数学習について検討する。
モデルの再利用は、各パーティーのためにローカルモデルがトレーニングされていると仮定して、マルチパーティの学習にとって有望なソリューションである。
論文 参考訳(メタデータ) (2023-05-23T09:46:54Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - A Coarse-to-Fine Approach for Urban Land Use Mapping Based on
Multisource Geospatial Data [4.2968261363970095]
本稿では,パーセルレベルの都市土地利用マッピングのための機械学習に基づくアプローチを提案する。
まず、道路網から生成された区画に基づいて、都市をビルトアップと非ビルトアップに分割する。
次に,異なる地域におけるパーセルの分類戦略を採用し,最終的に分類結果を統合された土地利用地図に組み合わせた。
論文 参考訳(メタデータ) (2022-08-18T13:30:56Z) - Source-Free Domain Adaptation via Distribution Estimation [106.48277721860036]
ドメイン適応は、ラベル付きソースドメインから学んだ知識を、データ分散が異なるラベル付きターゲットドメインに転送することを目的としています。
近年,ソースフリードメイン適応 (Source-Free Domain Adaptation, SFDA) が注目されている。
本研究では,SFDA-DEと呼ばれる新しいフレームワークを提案し,ソース分布推定によるSFDAタスクに対処する。
論文 参考訳(メタデータ) (2022-04-24T12:22:19Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - UMAD: Universal Model Adaptation under Domain and Category Shift [138.12678159620248]
Universal Model Adaptation (UMAD)フレームワークは、ソースデータにアクセスせずに両方のUDAシナリオを処理する。
未知のサンプルと未知のサンプルを識別するのに役立つ情報整合性スコアを開発した。
オープンセットおよびオープンパーティルセット UDA シナリオの実験では、UMAD が最先端のデータ依存手法に匹敵する性能を示した。
論文 参考訳(メタデータ) (2021-12-16T01:22:59Z) - Attention-augmented Spatio-Temporal Segmentation for Land Cover Mapping [9.992909929182202]
衛星データの空間的および時間的性質を共同利用するために、UNet構造と双方向LSTMおよび注意メカニズムを組み込んだ新しいアーキテクチャを紹介します。
世界中の複数地域で作物をマッピングする手法の評価を行った。
論文 参考訳(メタデータ) (2021-05-02T05:39:42Z) - A hierarchical deep learning framework for the consistent classification
of land use objects in geospatial databases [8.703408520845645]
本稿では,土地利用情報を検証するための階層的ディープラーニングフレームワークを提案する。
複数レベルの土地利用を階層的に同時に予測することを目的とした新しいCNN方式を提案する。
実験によると、CNNはJOに依存しており、全体の精度は92.5%まで向上している。
論文 参考訳(メタデータ) (2021-04-14T17:16:35Z) - A Novel Spatial-Spectral Framework for the Classification of
Hyperspectral Satellite Imagery [1.066048003460524]
本研究では,土地被覆分類データに含まれるスペクトル情報と空間情報の両方を考慮に入れた新しい枠組みを提案する。
提案手法は,パヴィア大学とインド・パインズのデータセットでそれぞれ99.52%,98.31%の精度を達成し,従来の手法よりも優れている。
論文 参考訳(メタデータ) (2020-07-22T16:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。