FS-Net: Full Scale Network and Adaptive Threshold for Improving
Extraction of Micro-Retinal Vessel Structures
- URL: http://arxiv.org/abs/2311.08059v3
- Date: Wed, 13 Dec 2023 09:47:22 GMT
- Title: FS-Net: Full Scale Network and Adaptive Threshold for Improving
Extraction of Micro-Retinal Vessel Structures
- Authors: Melaku N. Getahun, Oleg Y. Rogov, Dmitry V. Dylov, Andrey Somov, Ahmed
Bouridane, Rifat Hamoudi
- Abstract summary: We propose a full-scale micro-vessel extraction mechanism based on an encoder-decoder neural network architecture.
The proposed solution has been evaluated using the DRIVE, CHASE-DB1, and STARE datasets.
- Score: 4.776514178760067
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Retinal vascular segmentation, is a widely researched subject in biomedical
image processing, aims to relieve ophthalmologists' workload when treating and
detecting retinal disorders. However, segmenting retinal vessels has its own
set of challenges, with prior techniques failing to generate adequate results
when segmenting branches and microvascular structures. The neural network
approaches used recently are characterized by the inability to keep local and
global properties together and the failure to capture tiny end vessels make it
challenging to attain the desired result. To reduce this retinal vessel
segmentation problem, we propose a full-scale micro-vessel extraction mechanism
based on an encoder-decoder neural network architecture, sigmoid smoothing, and
an adaptive threshold method. The network consists of of residual, encoder
booster, bottleneck enhancement, squeeze, and excitation building blocks. All
of these blocks together help to improve the feature extraction and prediction
of the segmentation map. The proposed solution has been evaluated using the
DRIVE, CHASE-DB1, and STARE datasets, and competitive results are obtained when
compared with previous studies. The AUC and accuracy on the DRIVE dataset are
0.9884 and 0.9702, respectively. On the CHASE-DB1 dataset, the scores are
0.9903 and 0.9755, respectively. On the STARE dataset, the scores are 0.9916
and 0.9750, respectively. The performance achieved is one step ahead of what
has been done in previous studies, and this results in a higher chance of
having this solution in real-life diagnostic centers that seek ophthalmologists
attention.
Related papers
- SMILE-UHURA Challenge -- Small Vessel Segmentation at Mesoscopic Scale from Ultra-High Resolution 7T Magnetic Resonance Angiograms [60.35639972035727]
The lack of publicly available annotated datasets has impeded the development of robust, machine learning-driven segmentation algorithms.
The SMILE-UHURA challenge addresses the gap in publicly available annotated datasets by providing an annotated dataset of Time-of-Flight angiography acquired with 7T MRI.
Dice scores reached up to 0.838 $pm$ 0.066 and 0.716 $pm$ 0.125 on the respective datasets, with an average performance of up to 0.804 $pm$ 0.15.
arXiv Detail & Related papers (2024-11-14T17:06:00Z) - KaLDeX: Kalman Filter based Linear Deformable Cross Attention for Retina Vessel Segmentation [46.57880203321858]
We propose a novel network (KaLDeX) for vascular segmentation leveraging a Kalman filter based linear deformable cross attention (LDCA) module.
Our approach is based on two key components: Kalman filter (KF) based linear deformable convolution (LD) and cross-attention (CA) modules.
The proposed method is evaluated on retinal fundus image datasets (DRIVE, CHASE_BD1, and STARE) as well as the 3mm and 6mm of the OCTA-500 dataset.
arXiv Detail & Related papers (2024-10-28T16:00:42Z) - Region Guided Attention Network for Retinal Vessel Segmentation [19.587662416331682]
We present a lightweight retinal vessel segmentation network based on the encoder-decoder mechanism with region-guided attention.
Dice loss penalises false positives and false negatives equally, encouraging the model to generate more accurate segmentation.
Experiments on a benchmark dataset show better performance (0.8285, 0.8098, 0.9677, and 0.8166 recall, precision, accuracy and F1 score respectively) compared to state-of-the-art methods.
arXiv Detail & Related papers (2024-07-22T00:08:18Z) - WATUNet: A Deep Neural Network for Segmentation of Volumetric Sweep
Imaging Ultrasound [1.2903292694072621]
Volume sweep imaging (VSI) is an innovative approach that enables untrained operators to capture quality ultrasound images.
We present a novel segmentation model known as Wavelet_Attention_UNet (WATUNet)
In this model, we incorporate wavelet gates (WGs) and attention gates (AGs) between the encoder and decoder instead of a simple connection to overcome the limitations mentioned.
arXiv Detail & Related papers (2023-11-17T20:32:37Z) - MAF-Net: Multiple attention-guided fusion network for fundus vascular
image segmentation [1.3295074739915493]
We propose a multiple attention-guided fusion network (MAF-Net) to accurately detect blood vessels in retinal fundus images.
Traditional UNet-based models may lose partial information due to explicitly modeling long-distance dependencies.
We show that our method produces satisfactory results compared to some state-of-the-art methods.
arXiv Detail & Related papers (2023-05-05T15:22:20Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images [0.0]
The vascular structure of blood vessels is important in diagnosing retinal conditions such as glaucoma and diabetic retinopathy.
We propose an approach for segmenting retinal vessels that uses deep learning along with transfer learning.
Our approach results in greater segmentation accuracy than other approaches.
arXiv Detail & Related papers (2020-12-16T20:34:48Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Collaborative Boundary-aware Context Encoding Networks for Error Map
Prediction [65.44752447868626]
We propose collaborative boundaryaware context encoding networks called AEP-Net for error prediction task.
Specifically, we propose a collaborative feature transformation branch for better feature fusion between images and masks, and precise localization of error regions.
The AEP-Net achieves an average DSC of 0.8358, 0.8164 for error prediction task, and shows a high Pearson correlation coefficient of 0.9873.
arXiv Detail & Related papers (2020-06-25T12:42:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.