Region Guided Attention Network for Retinal Vessel Segmentation
- URL: http://arxiv.org/abs/2407.18970v3
- Date: Sat, 21 Sep 2024 02:37:07 GMT
- Title: Region Guided Attention Network for Retinal Vessel Segmentation
- Authors: Syed Javed, Tariq M. Khan, Abdul Qayyum, Arcot Sowmya, Imran Razzak,
- Abstract summary: We present a lightweight retinal vessel segmentation network based on the encoder-decoder mechanism with region-guided attention.
Dice loss penalises false positives and false negatives equally, encouraging the model to generate more accurate segmentation.
Experiments on a benchmark dataset show better performance (0.8285, 0.8098, 0.9677, and 0.8166 recall, precision, accuracy and F1 score respectively) compared to state-of-the-art methods.
- Score: 19.587662416331682
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Retinal imaging has emerged as a promising method of addressing this challenge, taking advantage of the unique structure of the retina. The retina is an embryonic extension of the central nervous system, providing a direct in vivo window into neurological health. Recent studies have shown that specific structural changes in retinal vessels can not only serve as early indicators of various diseases but also help to understand disease progression. In this work, we present a lightweight retinal vessel segmentation network based on the encoder-decoder mechanism with region-guided attention. We introduce inverse addition attention blocks with region guided attention to focus on the foreground regions and improve the segmentation of regions of interest. To further boost the model's performance on retinal vessel segmentation, we employ a weighted dice loss. This choice is particularly effective in addressing the class imbalance issues frequently encountered in retinal vessel segmentation tasks. Dice loss penalises false positives and false negatives equally, encouraging the model to generate more accurate segmentation with improved object boundary delineation and reduced fragmentation. Extensive experiments on a benchmark dataset show better performance (0.8285, 0.8098, 0.9677, and 0.8166 recall, precision, accuracy and F1 score respectively) compared to state-of-the-art methods.
Related papers
- FS-Net: Full Scale Network and Adaptive Threshold for Improving
Extraction of Micro-Retinal Vessel Structures [4.776514178760067]
We propose a full-scale micro-vessel extraction mechanism based on an encoder-decoder neural network architecture.
The proposed solution has been evaluated using the DRIVE, CHASE-DB1, and STARE datasets.
arXiv Detail & Related papers (2023-11-14T10:32:17Z) - Deep Angiogram: Trivializing Retinal Vessel Segmentation [1.8479315677380455]
We propose a contrastive variational auto-encoder that can filter out irrelevant features and synthesize a latent image, named deep angiogram.
The generalizability of the synthetic network is improved by the contrastive loss that makes the model less sensitive to variations of image contrast and noisy features.
arXiv Detail & Related papers (2023-07-01T06:13:10Z) - MAF-Net: Multiple attention-guided fusion network for fundus vascular
image segmentation [1.3295074739915493]
We propose a multiple attention-guided fusion network (MAF-Net) to accurately detect blood vessels in retinal fundus images.
Traditional UNet-based models may lose partial information due to explicitly modeling long-distance dependencies.
We show that our method produces satisfactory results compared to some state-of-the-art methods.
arXiv Detail & Related papers (2023-05-05T15:22:20Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - EAR-NET: Error Attention Refining Network For Retinal Vessel
Segmentation [22.91753200323264]
We propose a novel error attention refining network (ERA-Net) that is capable of learning and predicting the potential false predictions.
The proposed ERA-Net in the refine stage drives the model to focus on and refine the segmentation errors produced in the initial training stage.
Experimental results demonstrate that our method achieves state-of-the-art performance on two common retinal blood vessel datasets.
arXiv Detail & Related papers (2021-07-03T06:03:46Z) - Hierarchical Deep Network with Uncertainty-aware Semi-supervised
Learning for Vessel Segmentation [58.45470500617549]
We propose a hierarchical deep network where an attention mechanism localizes the low-contrast capillary regions guided by the whole vessels.
The proposed method achieves the state-of-the-art performance in the benchmarks of both retinal artery/vein segmentation in fundus images and liver portal/hepatic vessel segmentation in CT images.
arXiv Detail & Related papers (2021-05-31T06:55:43Z) - Transfer Learning Through Weighted Loss Function and Group Normalization
for Vessel Segmentation from Retinal Images [0.0]
The vascular structure of blood vessels is important in diagnosing retinal conditions such as glaucoma and diabetic retinopathy.
We propose an approach for segmenting retinal vessels that uses deep learning along with transfer learning.
Our approach results in greater segmentation accuracy than other approaches.
arXiv Detail & Related papers (2020-12-16T20:34:48Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Multi-Task Neural Networks with Spatial Activation for Retinal Vessel
Segmentation and Artery/Vein Classification [49.64863177155927]
We propose a multi-task deep neural network with spatial activation mechanism to segment full retinal vessel, artery and vein simultaneously.
The proposed network achieves pixel-wise accuracy of 95.70% for vessel segmentation, and A/V classification accuracy of 94.50%, which is the state-of-the-art performance for both tasks.
arXiv Detail & Related papers (2020-07-18T05:46:47Z) - Retinopathy of Prematurity Stage Diagnosis Using Object Segmentation and
Convolutional Neural Networks [68.96150598294072]
Retinopathy of Prematurity (ROP) is an eye disorder primarily affecting premature infants with lower weights.
It causes proliferation of vessels in the retina and could result in vision loss and, eventually, retinal detachment, leading to blindness.
In recent years, there has been a significant effort to automate the diagnosis using deep learning.
This paper builds upon the success of previous models and develops a novel architecture, which combines object segmentation and convolutional neural networks (CNN)
Our proposed system first trains an object segmentation model to identify the demarcation line at a pixel level and adds the resulting mask as an additional "color" channel in
arXiv Detail & Related papers (2020-04-03T14:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.