Empowering Multi-step Reasoning across Languages via Tree-of-Thoughts
- URL: http://arxiv.org/abs/2311.08097v4
- Date: Fri, 21 Jun 2024 06:06:51 GMT
- Title: Empowering Multi-step Reasoning across Languages via Tree-of-Thoughts
- Authors: Leonardo Ranaldi, Giulia Pucci, Federico Ranaldi, Elena Sofia Ruzzetti, Fabio Massimo Zanzotto,
- Abstract summary: Chain-of-Thought (CoT) methods empower Large Language Models (LLMs) to solve complex tasks in a step-by-step manner.
The ability to deliver multi-step reasoning remains limited to English because of the imbalance in the distribution of pre-training data.
We propose Cross-lingual Tree-of-Thoughts (Cross-ToT), a method for aligning Cross-lingual CoT reasoning across languages.
- Score: 1.8175282137722093
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reasoning methods, best exemplified by the well-known Chain-of-Thought (CoT), empower the reasoning abilities of Large Language Models (LLMs) by eliciting them to solve complex tasks in a step-by-step manner. Although they are achieving significant success, the ability to deliver multi-step reasoning remains limited to English because of the imbalance in the distribution of pre-training data, which makes other languages a barrier. In this paper, we propose Cross-lingual Tree-of-Thoughts (Cross-ToT), a method for aligning Cross-lingual CoT reasoning across languages. The proposed method, through a self-consistent cross-lingual prompting mechanism inspired by the Tree-of-Thoughts approach, provides multi-step reasoning paths in different languages that, during the steps, lead to the final solution. Experimental evaluations show that our method significantly outperforms existing prompting methods by reducing the number of interactions and achieving state-of-the-art performance.
Related papers
- No Train but Gain: Language Arithmetic for training-free Language Adapters enhancement [59.37775534633868]
We introduce a novel method called language arithmetic, which enables training-free post-processing.
The effectiveness of the proposed solution is demonstrated on three downstream tasks in a MAD-X-based set of cross-lingual schemes.
arXiv Detail & Related papers (2024-04-24T08:52:40Z) - CrossIn: An Efficient Instruction Tuning Approach for Cross-Lingual Knowledge Alignment [38.35458193262633]
English-centric models are usually suboptimal in other languages.
We propose a novel approach called CrossIn, which utilizes a mixed composition of cross-lingual instruction tuning data.
arXiv Detail & Related papers (2024-04-18T06:20:50Z) - How Interpretable are Reasoning Explanations from Prompting Large Language Models? [34.4659592398593]
We present a comprehensive and multifaceted evaluation of interpretability, examining not only faithfulness but also robustness and utility across commonsense reasoning benchmarks.
In addition, we introduce a simple interpretability alignment technique termed Self-Entailment-Alignment Chain-of-thought, that yields more than 70% improvements across multiple dimensions of interpretability.
arXiv Detail & Related papers (2024-02-19T06:11:28Z) - Cross-lingual Prompting: Improving Zero-shot Chain-of-Thought Reasoning
across Languages [46.496557448392494]
Chain-of-thought (CoT) is capable of eliciting models to explicitly generate reasoning paths.
Existing zero-shot prompting techniques are limited to a single language.
We introduce cross-lingual prompting (CLP), aiming to improve zero-shot CoT reasoning across languages.
arXiv Detail & Related papers (2023-10-23T10:56:03Z) - Self-Polish: Enhance Reasoning in Large Language Models via Problem Refinement [50.62461749446111]
Self-Polish (SP) is a novel method that facilitates the model's reasoning by guiding it to progressively refine the given problems to be more comprehensible and solvable.
SP is to all other prompting methods of answer/reasoning side like CoT, allowing for seamless integration with state-of-the-art techniques for further improvement.
arXiv Detail & Related papers (2023-05-23T19:58:30Z) - Improving Factuality and Reasoning in Language Models through Multiagent
Debate [95.10641301155232]
We present a complementary approach to improve language responses where multiple language model instances propose and debate their individual responses and reasoning processes over multiple rounds to arrive at a common final answer.
Our findings indicate that this approach significantly enhances mathematical and strategic reasoning across a number of tasks.
Our approach may be directly applied to existing black-box models and uses identical procedure and prompts for all tasks we investigate.
arXiv Detail & Related papers (2023-05-23T17:55:11Z) - Chain of Thought Prompting Elicits Reasoning in Large Language Models [56.811278668446825]
This paper explores the ability of language models to generate a coherent chain of thought.
Experiments show that inducing a chain of thought via prompting can enable sufficiently large language models to better perform reasoning tasks.
arXiv Detail & Related papers (2022-01-28T02:33:07Z) - It's All in the Heads: Using Attention Heads as a Baseline for
Cross-Lingual Transfer in Commonsense Reasoning [4.200736775540874]
We design a simple approach to commonsense reasoning which trains a linear classifier with weights of multi-head attention as features.
The method performs competitively with recent supervised and unsupervised approaches for commonsense reasoning.
Most of the performance is given by the same small subset of attention heads for all studied languages.
arXiv Detail & Related papers (2021-06-22T21:25:43Z) - Robust Cross-lingual Embeddings from Parallel Sentences [65.85468628136927]
We propose a bilingual extension of the CBOW method which leverages sentence-aligned corpora to obtain robust cross-lingual word representations.
Our approach significantly improves crosslingual sentence retrieval performance over all other approaches.
It also achieves parity with a deep RNN method on a zero-shot cross-lingual document classification task.
arXiv Detail & Related papers (2019-12-28T16:18:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.