Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning
Approach
- URL: http://arxiv.org/abs/2311.08170v1
- Date: Tue, 14 Nov 2023 13:54:35 GMT
- Title: Neural Lattice Reduction: A Self-Supervised Geometric Deep Learning
Approach
- Authors: Giovanni Luca Marchetti, Gabriele Cesa, Kumar Pratik, Arash Behboodi
- Abstract summary: We design a deep neural model outputting factorized unimodular matrices and train it in a self-supervised manner by penalizing non-orthogonal lattice bases.
- Score: 14.536819369925398
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Lattice reduction is a combinatorial optimization problem aimed at finding
the most orthogonal basis in a given lattice. In this work, we address lattice
reduction via deep learning methods. We design a deep neural model outputting
factorized unimodular matrices and train it in a self-supervised manner by
penalizing non-orthogonal lattice bases. We incorporate the symmetries of
lattice reduction into the model by making it invariant and equivariant with
respect to appropriate continuous and discrete groups.
Related papers
- ADMM-MM Algorithm for General Tensor Decomposition [7.0326155922512275]
The proposed algorithm supports three basic loss functions ($ell$-loss, $ell$-loss and KL divergence) and various low-rank tensor decomposition models (CP, Tucker, TT, and TR decompositions)
We show that wide-range applications can be solved by the proposed algorithm, and can be easily extended to any established tensor decomposition models in a plug-and-play manner.
arXiv Detail & Related papers (2023-12-19T00:17:34Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
We show that when emphdone right -- by which we mean using specific insights from optimisation and kernel communities -- gradient descent is highly effective.
We introduce a emphstochastic dual descent algorithm, explain its design in an intuitive manner and illustrate the design choices.
Our method places Gaussian process regression on par with state-of-the-art graph neural networks for molecular binding affinity prediction.
arXiv Detail & Related papers (2023-10-31T16:15:13Z) - Simplifying Momentum-based Positive-definite Submanifold Optimization
with Applications to Deep Learning [24.97120654216651]
We show how to solve difficult differential equations with momentum on a submanifold.
We do so by proposing a generalized version of the Riemannian normal coordinates.
We use our approach to simplify existing approaches for structured covariances and develop matrix-inverse-free $2textnd$orders for deep learning with low precision by using only matrix multiplications.
arXiv Detail & Related papers (2023-02-20T03:31:11Z) - Implicit Regularization for Group Sparsity [33.487964460794764]
We show that gradient descent over the squared regression loss, without any explicit regularization, biases towards solutions with a group sparsity structure.
We analyze the gradient dynamics of the corresponding regression problem in the general noise setting and obtain minimax-optimal error rates.
In the degenerate case of size-one groups, our approach gives rise to a new algorithm for sparse linear regression.
arXiv Detail & Related papers (2023-01-29T20:54:03Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - Graph Polynomial Convolution Models for Node Classification of
Non-Homophilous Graphs [52.52570805621925]
We investigate efficient learning from higher-order graph convolution and learning directly from adjacency matrix for node classification.
We show that the resulting model lead to new graphs and residual scaling parameter.
We demonstrate that the proposed methods obtain improved accuracy for node-classification of non-homophilous parameters.
arXiv Detail & Related papers (2022-09-12T04:46:55Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
We propose a family of Riemannian algorithms generalizing and extending the seminal approximation framework of Robbins and Monro.
Compared to their Euclidean counterparts, Riemannian algorithms are much less understood due to lack of a global linear structure on the manifold.
We provide a general template of almost sure convergence results that mirrors and extends the existing theory for Euclidean Robbins-Monro schemes.
arXiv Detail & Related papers (2022-06-14T12:30:11Z) - Semi-Supervised Subspace Clustering via Tensor Low-Rank Representation [64.49871502193477]
We propose a novel semi-supervised subspace clustering method, which is able to simultaneously augment the initial supervisory information and construct a discriminative affinity matrix.
Comprehensive experimental results on six commonly-used benchmark datasets demonstrate the superiority of our method over state-of-the-art methods.
arXiv Detail & Related papers (2022-05-21T01:47:17Z) - Nonlinear matrix recovery using optimization on the Grassmann manifold [18.655422834567577]
We investigate the problem of recovering a partially observed high-rank clustering matrix whose columns obey a nonlinear structure such as a union of subspaces.
We show that the alternating limit converges to a unique point using the Kurdyka-Lojasi property.
arXiv Detail & Related papers (2021-09-13T16:13:13Z) - A Parallelizable Lattice Rescoring Strategy with Neural Language Models [62.20538383769179]
A posterior-based lattice expansion algorithm is proposed for efficient lattice rescoring with neural language models (LMs) for automatic speech recognition.
Experiments on the Switchboard dataset show that the proposed rescoring strategy obtains comparable recognition performance.
The parallel rescoring method offers more flexibility by simplifying the integration of PyTorch-trained neural LMs for lattice rescoring with Kaldi.
arXiv Detail & Related papers (2021-03-08T21:23:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.