論文の概要: Convolutional Neural Networks Exploiting Attributes of Biological
Neurons
- arxiv url: http://arxiv.org/abs/2311.08314v1
- Date: Tue, 14 Nov 2023 16:58:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 13:13:12.820641
- Title: Convolutional Neural Networks Exploiting Attributes of Biological
Neurons
- Title(参考訳): 生体ニューロンの特性を利用した畳み込みニューラルネットワーク
- Authors: Neeraj Kumar Singh, Nikhil R. Pal
- Abstract要約: 畳み込みニューラルネットワーク(CNN)のようなディープニューラルネットワークは、最前線として登場し、しばしば人間の能力を上回っている。
ここでは,生物ニューロンの原理をCNNの特定の層に統合する。
我々は,CNNの入力として使用する画像の特徴を抽出し,訓練効率の向上と精度の向上を期待する。
- 参考スコア(独自算出の注目度): 7.3517426088986815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this era of artificial intelligence, deep neural networks like
Convolutional Neural Networks (CNNs) have emerged as front-runners, often
surpassing human capabilities. These deep networks are often perceived as the
panacea for all challenges. Unfortunately, a common downside of these networks
is their ''black-box'' character, which does not necessarily mirror the
operation of biological neural systems. Some even have millions/billions of
learnable (tunable) parameters, and their training demands extensive data and
time.
Here, we integrate the principles of biological neurons in certain layer(s)
of CNNs. Specifically, we explore the use of neuro-science-inspired
computational models of the Lateral Geniculate Nucleus (LGN) and simple cells
of the primary visual cortex. By leveraging such models, we aim to extract
image features to use as input to CNNs, hoping to enhance training efficiency
and achieve better accuracy. We aspire to enable shallow networks with a
Push-Pull Combination of Receptive Fields (PP-CORF) model of simple cells as
the foundation layer of CNNs to enhance their learning process and performance.
To achieve this, we propose a two-tower CNN, one shallow tower and the other as
ResNet 18. Rather than extracting the features blindly, it seeks to mimic how
the brain perceives and extracts features. The proposed system exhibits a
noticeable improvement in the performance (on an average of $5\%-10\%$) on
CIFAR-10, CIFAR-100, and ImageNet-100 datasets compared to ResNet-18. We also
check the efficiency of only the Push-Pull tower of the network.
- Abstract(参考訳): 人工知能の時代、畳み込みニューラルネットワーク(CNN)のようなディープニューラルネットワークが最前線として登場し、しばしば人間の能力を超えた。
これらの深層ネットワークは、しばしばあらゆる課題のパナシーと見なされる。
残念ながら、これらのネットワークの一般的な欠点は、生物学的ニューラルネットワークの動作を必ずしも反映しない「ブラックボックス」キャラクタである。
学習可能な(可変な)パラメータが数百万/数あるものもあれば、そのトレーニングには広範なデータと時間が必要です。
ここでは、CNNの特定の層に生物学的ニューロンの原理を統合する。
具体的には,神経科学に触発された側原性核(lgn)の計算モデルと一次視覚野の単純細胞の利用について検討する。
このようなモデルを活用することで,CNNの入力として使用する画像の特徴を抽出し,学習効率の向上と精度の向上を期待する。
我々は,CNNの基礎層として単純なセルのPush-Pull Combination of Receptive Fields (PP-CORF)モデルで浅層ネットワークを実現し,学習プロセスと性能を向上させることを目指している。
そこで本研究では,2-tower CNNと1つの浅層タワー,もう1つはResNet 18として提案する。
視覚的に特徴を抽出するのではなく、脳がどのように特徴を知覚し、抽出するかを模倣しようとしている。
提案方式は,resnet-18と比較してcifar-10,cifar-100,imagenet-100データセットの性能(平均5\%-10\%$)が著しく向上した。
また,ネットワークのPush-Pullタワーのみの有効性を確認する。
関連論文リスト
- NEAR: A Training-Free Pre-Estimator of Machine Learning Model Performance [0.0]
我々は、トレーニングなしで最適なニューラルネットワークを特定するために、アクティベーションランク(NEAR)によるゼロコストプロキシネットワーク表現を提案する。
このネットワークスコアとNAS-Bench-101とNATS-Bench-SSS/TSSのモデル精度の最先端相関を実証した。
論文 参考訳(メタデータ) (2024-08-16T14:38:14Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF)アルゴリズムは、現在まで完全に接続されたネットワークでしか使われていない。
FFパラダイムをCNNに拡張する方法を示す。
我々のFF学習したCNNは、空間的に拡張された新しいラベリング手法を特徴とし、MNISTの手書き桁データセットにおいて99.16%の分類精度を実現している。
論文 参考訳(メタデータ) (2023-12-22T18:56:35Z) - Event-based Video Reconstruction via Potential-assisted Spiking Neural
Network [48.88510552931186]
バイオインスパイアされたニューラルネットワークは、イベント駆動ハードウェア上での計算効率の向上につながる可能性がある。
完全スパイキングニューラルネットワーク(EVSNN)に基づくイベントベースビデオ再構成フレームワークを提案する。
スパイクニューロンは、そのような時間依存タスクを完了させるために有用な時間情報(メモリ)を格納する可能性がある。
論文 参考訳(メタデータ) (2022-01-25T02:05:20Z) - Learning from Event Cameras with Sparse Spiking Convolutional Neural
Networks [0.0]
畳み込みニューラルネットワーク(CNN)は現在、コンピュータビジョン問題のデファクトソリューションとなっている。
イベントカメラとスピーキングニューラルネットワーク(SNN)を用いたエンドツーエンドの生物学的インスパイアされたアプローチを提案する。
この手法は、一般的なディープラーニングフレームワークPyTorchを使用して、イベントデータに直接スパーススパイクニューラルネットワークのトレーニングを可能にする。
論文 参考訳(メタデータ) (2021-04-26T13:52:01Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
生物学的脳シナプスによく似たSNN(spiking neural Network)は、低消費電力のために注目を集めている。
我々は、関係する性能を改善する汎用ハイブリッドニューラルネットワーク(hnn)を構築した。
論文 参考訳(メタデータ) (2021-02-21T12:03:16Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
本稿では,特定のレイヤの最も情報性の高い特徴を表現した対応する画像を作成することにより,画像の集合を視覚的に解釈する手法を提案する。
本手法では, 生成ネットワークを必要とせず, 元のモデルに変更を加えることなく, デュアルオブジェクトのアクティベーションと距離損失を利用する。
論文 参考訳(メタデータ) (2021-01-29T07:46:39Z) - Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks [0.9790524827475205]
本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
論文 参考訳(メタデータ) (2020-05-24T01:04:53Z) - Curriculum By Smoothing [52.08553521577014]
畳み込みニューラルネットワーク(CNN)は、画像分類、検出、セグメンテーションなどのコンピュータビジョンタスクにおいて顕著な性能を示している。
アンチエイリアスフィルタやローパスフィルタを用いてCNNの機能埋め込みを円滑化するエレガントなカリキュラムベースのスキームを提案する。
トレーニング中に特徴マップ内の情報量が増加するにつれて、ネットワークはデータのより優れた表現を徐々に学習することができる。
論文 参考訳(メタデータ) (2020-03-03T07:27:44Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
XOR論理関数を100%精度で学習し, 標準的なニューロンに後続のアピーカルデンドライト活性化(ADA)が認められた。
コンピュータビジョン,信号処理,自然言語処理の6つのベンチマークデータセットについて実験を行った。
論文 参考訳(メタデータ) (2020-02-02T21:09:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。