論文の概要: Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks
- arxiv url: http://arxiv.org/abs/2005.11633v2
- Date: Tue, 16 Jun 2020 14:12:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-29 13:15:24.462898
- Title: Effective and Efficient Computation with Multiple-timescale Spiking
Recurrent Neural Networks
- Title(参考訳): マルチタイムスケールスパイクリカレントニューラルネットワークによる効率的かつ効率的な計算
- Authors: Bojian Yin, Federico Corradi, Sander M. Boht\'e
- Abstract要約: 本稿では,新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が,最先端の性能を実現する方法を示す。
我々は、従来のRNNよりも難しいタスクにおいて、SRNNの100倍のエネルギー改善を計算します。
- 参考スコア(独自算出の注目度): 0.9790524827475205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of brain-inspired neuromorphic computing as a paradigm for edge
AI is motivating the search for high-performance and efficient spiking neural
networks to run on this hardware. However, compared to classical neural
networks in deep learning, current spiking neural networks lack competitive
performance in compelling areas. Here, for sequential and streaming tasks, we
demonstrate how a novel type of adaptive spiking recurrent neural network
(SRNN) is able to achieve state-of-the-art performance compared to other
spiking neural networks and almost reach or exceed the performance of classical
recurrent neural networks (RNNs) while exhibiting sparse activity. From this,
we calculate a $>$100x energy improvement for our SRNNs over classical RNNs on
the harder tasks. To achieve this, we model standard and adaptive
multiple-timescale spiking neurons as self-recurrent neural units, and leverage
surrogate gradients and auto-differentiation in the PyTorch Deep Learning
framework to efficiently implement backpropagation-through-time, including
learning of the important spiking neuron parameters to adapt our spiking
neurons to the tasks.
- Abstract(参考訳): エッジAIのパラダイムとしての脳に触発されたニューロモルフィックコンピューティングの出現は、このハードウェア上で動く高性能で効率的なスパイクニューラルネットワークの探索を動機付けている。
しかし、ディープラーニングにおける古典的なニューラルネットワークと比較して、現在のスパイクニューラルネットワークは、説得力のある分野では競争力に欠ける。
ここでは、逐次的かつストリーミング的なタスクにおいて、新しいタイプの適応スパイクリカレントニューラルネットワーク(SRNN)が、他のスパイクニューラルネットワークと比較して最先端の性能を実現し、スパース活性を示しながら、古典的リカレントニューラルネットワーク(RNN)の性能にほぼ到達または超えることを実証する。
この結果から,従来のRNNに比べて,SRNNのエネルギー効率は100倍に向上した。
これを実現するために、我々は、標準および適応的多時間スパイクニューロンを自己再生神経ユニットとしてモデル化し、pytorchディープラーニングフレームワークにおけるサロゲート勾配と自己分化を利用して、スパイクニューロンをタスクに適応させるために重要なスパイクニューロンパラメータの学習を含む、バックプロパゲーションを効率的に実装する。
関連論文リスト
- Exploiting Heterogeneity in Timescales for Sparse Recurrent Spiking Neural Networks for Energy-Efficient Edge Computing [16.60622265961373]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックコンピューティングの最前線である。
本稿では,SNNのパフォーマンスに革命をもたらす3つの画期的な研究をまとめる。
論文 参考訳(メタデータ) (2024-07-08T23:33:12Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Expressivity of Spiking Neural Networks [15.181458163440634]
本研究では,ニューロンの発射時間内に情報を符号化したスパイクニューラルネットワークの能力について検討する。
ReLUネットワークとは対照的に、スパイクニューラルネットワークは連続関数と不連続関数の両方を実現することができる。
論文 参考訳(メタデータ) (2023-08-16T08:45:53Z) - Accelerating SNN Training with Stochastic Parallelizable Spiking Neurons [1.7056768055368383]
スパイキングニューラルネットワーク(SNN)は、特にニューロモルフィックハードウェアにおいて、少ないエネルギーを使用しながら特徴を学習することができる。
深層学習において最も広く用いられるニューロンは、時間と火災(LIF)ニューロンである。
論文 参考訳(メタデータ) (2023-06-22T04:25:27Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Accurate and efficient time-domain classification with adaptive spiking
recurrent neural networks [1.8515971640245998]
スパイクニューラルネットワーク(SNN)は、より生物学的に実行可能で、より強力なニューラルネットワークモデルとして研究されている。
本稿では、新規なサロゲート勾配と、チューナブルおよび適応性スピッキングニューロンの繰り返しネットワークがSNNの最先端を生み出す様子を示す。
論文 参考訳(メタデータ) (2021-03-12T10:27:29Z) - Combining Spiking Neural Network and Artificial Neural Network for
Enhanced Image Classification [1.8411688477000185]
生物学的脳シナプスによく似たSNN(spiking neural Network)は、低消費電力のために注目を集めている。
我々は、関係する性能を改善する汎用ハイブリッドニューラルネットワーク(hnn)を構築した。
論文 参考訳(メタデータ) (2021-02-21T12:03:16Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。