論文の概要: Causal Message Passing: A Method for Experiments with Unknown and
General Network Interference
- arxiv url: http://arxiv.org/abs/2311.08340v1
- Date: Tue, 14 Nov 2023 17:31:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-15 13:15:31.129955
- Title: Causal Message Passing: A Method for Experiments with Unknown and
General Network Interference
- Title(参考訳): 因果的メッセージパッシング:未知および一般ネットワーク干渉実験のための方法
- Authors: Sadegh Shirani, Mohsen Bayati
- Abstract要約: 本研究では,複雑で未知のネットワーク干渉に対応する新しい枠組みを提案する。
本稿では,全処理効果を推定し,その効果を4つの数値シナリオで示すための実用的なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 6.2548734896918505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Randomized experiments are a powerful methodology for data-driven evaluation
of decisions or interventions. Yet, their validity may be undermined by network
interference. This occurs when the treatment of one unit impacts not only its
outcome but also that of connected units, biasing traditional treatment effect
estimations. Our study introduces a new framework to accommodate complex and
unknown network interference, moving beyond specialized models in the existing
literature. Our framework, which we term causal message-passing, is grounded in
a high-dimensional approximate message passing methodology and is specifically
tailored to experimental design settings with prevalent network interference.
Utilizing causal message-passing, we present a practical algorithm for
estimating the total treatment effect and demonstrate its efficacy in four
numerical scenarios, each with its unique interference structure.
- Abstract(参考訳): ランダム化実験は、データ駆動による意思決定や介入の評価のための強力な方法論である。
しかし、その妥当性はネットワーク干渉によって損なわれる可能性がある。
これは、1つのユニットの処理がその結果だけでなく、連結ユニットの処理にも影響を及ぼすときに起こり、従来の治療効果の推定をバイアスする。
本研究は,既存の文献における特殊なモデルを超えて,複雑で未知のネットワーク干渉に対応する新しい枠組みを提案する。
因果的メッセージパッシング(causal message-passing)と呼ぶこのフレームワークは,高次元近似メッセージパッシング手法に基礎を置き,ネットワーク干渉が一般的である実験的な設計設定に特化している。
因果的メッセージパッシングを用いて, 全処理効果を推定し, それぞれに固有の干渉構造を持つ4つの数値シナリオで有効性を示す実用的なアルゴリズムを提案する。
関連論文リスト
- Network Causal Effect Estimation In Graphical Models Of Contagion And Latent Confounding [2.654975444537834]
多くのネットワーク研究の鍵となる疑問は、観測された単位間の相関は、主に感染や潜伏によるものであるかである。
ネットワーク因果効果の推定手法を提案する。
実世界のネットワークを用いて,合成データによる手法の有効性と仮定の有効性を評価する。
論文 参考訳(メタデータ) (2024-11-02T22:12:44Z) - Higher-Order Causal Message Passing for Experimentation with Complex Interference [6.092214762701847]
本研究では、因果的メッセージパッシングに基づく新しい推定器のクラスを導入し、広範で未知な干渉のある設定に特化して設計する。
我々の推定器は、サンプルの平均値と時間とともに単位結果と処理のばらつきから情報を抽出し、観測データの効率的な利用を可能にする。
論文 参考訳(メタデータ) (2024-11-01T18:00:51Z) - Model-Based Inference and Experimental Design for Interference Using Partial Network Data [4.76518127830168]
本稿では,部分的ネットワークデータを用いた治療効果調整の評価と推定のためのフレームワークを提案する。
部分的ネットワークデータのみを用いて治療を割り当てる手順を説明する。
本研究では,インドとマラウイにおける情報拡散と観測グラフのシミュレーション実験によるアプローチの有効性を検証した。
論文 参考訳(メタデータ) (2024-06-17T17:27:18Z) - Integrating Active Learning in Causal Inference with Interference: A
Novel Approach in Online Experiments [5.488412825534217]
ACI(Causal Inference with Interference)におけるアクティブラーニング手法について紹介する。
ACIはガウス過程を用いて、隣人の治療課題の連続的な測定の関数として直接的および余分な処理効果を柔軟にモデル化する。
データ要求の低減による精度の高い効果推定の実現可能性を示す。
論文 参考訳(メタデータ) (2024-02-20T04:13:59Z) - A Reinforcement Learning Framework for Dynamic Mediation Analysis [16.284199152492487]
無限地平線設定における動的媒介効果を評価するための強化学習フレームワークを提案する。
平均治療効果を即時直接効果、即時媒介効果、遅延直接効果、遅延媒介効果に分解する。
我々はこれらの因果効果を推定するために、RLフレームワークの下で頑健で半パラメトリックで効率的な推定器を開発する。
論文 参考訳(メタデータ) (2023-01-31T00:50:05Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
個別多面的治療の観点からの時間的対実予測の包括的枠組み(TCFimt)を提案する。
TCFimtは、選択と時間変化バイアスを軽減するためにSeq2seqフレームワークの逆タスクを構築し、比較学習ベースのブロックを設計し、混合処理効果を分離した主治療効果と因果相互作用に分解する。
提案手法は, 特定の治療法による今後の結果予測と, 最先端手法よりも最適な治療タイプとタイミングを選択する上で, 良好な性能を示す。
論文 参考訳(メタデータ) (2022-12-17T15:01:05Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
我々は,古典的非干渉仮説の違反を考える。つまり,ある個人に対する治療が他者の結果に影響を及ぼす可能性がある。
干渉をトラクタブルにするために、干渉がどのように進行するかを記述する既知のネットワークを考える。
このような環境下での処理に対する平均的直接的処理効果の予測について検討した。
論文 参考訳(メタデータ) (2022-12-07T14:53:47Z) - CausalBench: A Large-scale Benchmark for Network Inference from
Single-cell Perturbation Data [61.088705993848606]
本稿では,実世界の介入データに対する因果推論手法を評価するベンチマークスイートCausalBenchを紹介する。
CaulBenchには、新しい分散ベースの介入メトリクスを含む、生物学的に動機付けられたパフォーマンスメトリクスが含まれている。
論文 参考訳(メタデータ) (2022-10-31T13:04:07Z) - Fair Effect Attribution in Parallel Online Experiments [57.13281584606437]
A/Bテストは、オンラインサービスで導入された変更の影響を確実に特定する目的で役立ちます。
オンラインプラットフォームでは,ユーザトラフィックをランダムに分割して多数の同時実験を行うのが一般的である。
異なるグループ間の完全なランダム化にもかかわらず、同時実験は互いに相互作用し、平均的な集団の結果に負の影響をもたらす。
論文 参考訳(メタデータ) (2022-10-15T17:15:51Z) - Almost-Matching-Exactly for Treatment Effect Estimation under Network
Interference [73.23326654892963]
本研究では,観測ネットワーク上でユニットが接続されたランダム化実験から直接処理効果を回復するマッチング手法を提案する。
本手法は, 近傍グラフ内の一意部分グラフの個数にほぼ一致する。
論文 参考訳(メタデータ) (2020-03-02T15:21:20Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
代替薬に対する患者一人の反応など,個人レベルの因果効果の推定について検討した。
我々は,表現の誘導的処理群距離を正規化することにより,境界を最小化する表現学習アルゴリズムを考案した。
これらのアルゴリズムを拡張して、重み付き表現を同時に学習し、治療群距離をさらに削減する。
論文 参考訳(メタデータ) (2020-01-21T10:16:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。