論文の概要: Uplift Modeling based on Graph Neural Network Combined with Causal
Knowledge
- arxiv url: http://arxiv.org/abs/2311.08434v1
- Date: Tue, 14 Nov 2023 07:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 18:57:18.024748
- Title: Uplift Modeling based on Graph Neural Network Combined with Causal
Knowledge
- Title(参考訳): 因果知識を組み合わせたグラフニューラルネットワークに基づく昇降モデリング
- Authors: Haowen Wang, Xinyan Ye, Yangze Zhou, Zhiyi Zhang, Longhan Zhang, Jing
Jiang
- Abstract要約: 本稿では、因果知識と昇降値の見積を組み合わせたグラフニューラルネットワークに基づくフレームワークを提案する。
本手法は, 典型的なシミュレーションデータに小さな誤差を伴って, 昇降値の予測に有効であることを示す。
- 参考スコア(独自算出の注目度): 9.005051998738134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uplift modeling is a fundamental component of marketing effect modeling,
which is commonly employed to evaluate the effects of treatments on outcomes.
Through uplift modeling, we can identify the treatment with the greatest
benefit. On the other side, we can identify clients who are likely to make
favorable decisions in response to a certain treatment. In the past, uplift
modeling approaches relied heavily on the difference-in-difference (DID)
architecture, paired with a machine learning model as the estimation learner,
while neglecting the link and confidential information between features. We
proposed a framework based on graph neural networks that combine causal
knowledge with an estimate of uplift value. Firstly, we presented a causal
representation technique based on CATE (conditional average treatment effect)
estimation and adjacency matrix structure learning. Secondly, we suggested a
more scalable uplift modeling framework based on graph convolution networks for
combining causal knowledge. Our findings demonstrate that this method works
effectively for predicting uplift values, with small errors in typical
simulated data, and its effectiveness has been verified in actual industry
marketing data.
- Abstract(参考訳): uplift modelingはマーケティング効果モデリングの基本的な要素であり、治療が結果に与える影響を評価するために一般的に使用される。
アップリフトモデリングにより、最大限の利益で治療を特定できる。
他方では、特定の治療に反応して好意的な意思決定を行う可能性のある顧客を特定できます。
これまで、アップリフトモデリングアプローチは、特徴間のリンクや機密情報を無視しながら、機械学習モデルと推定学習者として組み合わせた差分差分(DID)アーキテクチャに大きく依存していた。
我々は、因果知識と昇降値の推定を組み合わせたグラフニューラルネットワークに基づくフレームワークを提案する。
まず,CATE(条件平均処理効果)推定と隣接行列構造学習に基づく因果表現手法を提案する。
次に,グラフ畳み込みネットワークに基づく,因果知識を結合するよりスケーラブルなアップリフトモデリングフレームワークを提案する。
その結果,本手法は典型的なシミュレーションデータに小さな誤差を伴い,上昇値の予測に有効であり,実際のマーケティングデータでもその効果が検証されている。
関連論文リスト
- Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation [0.951494089949975]
因果グラフからの追加情報を考慮した新しいモデルNN-CGCを提案する。
本手法は因果グラフの不完全性に対して頑健であり,部分因果情報の使用は無視するよりも望ましいことを示す。
論文 参考訳(メタデータ) (2024-04-18T14:57:17Z) - Enhancing Dynamical System Modeling through Interpretable Machine
Learning Augmentations: A Case Study in Cathodic Electrophoretic Deposition [0.8796261172196743]
本稿では,物理システムのモデリング向上を目的とした包括的データ駆動フレームワークを提案する。
実証的応用として,電顕的電気泳動沈着(EPD)のモデル化を追求する。
論文 参考訳(メタデータ) (2024-01-16T14:58:21Z) - Has Your Pretrained Model Improved? A Multi-head Posterior Based
Approach [25.927323251675386]
我々は、世界的知識の源として各エンティティに関連するメタ機能を活用し、モデルからエンティティ表現を採用する。
本稿では,これらの表現とメタ機能との整合性を,事前学習モデルの評価指標として用いることを提案する。
提案手法の有効性は,関係データセットを用いたモデル,大規模言語モデル,画像モデルなど,様々な領域で実証されている。
論文 参考訳(メタデータ) (2024-01-02T17:08:26Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
ビジョンファウンデーションモデルは、非常に大きなモデルキャパシティと幅広いトレーニングデータから恩恵を受け、印象的なパワーを示す。
しかし、実際には、下流のシナリオは限られた計算資源や効率上の考慮のため、小さなモデルしかサポートできない。
これは、ファンデーションモデルの現実的な応用に重要な課題をもたらします。
論文 参考訳(メタデータ) (2023-04-05T07:28:33Z) - Robust Graph Representation Learning via Predictive Coding [46.22695915912123]
予測符号化は、当初脳の情報処理をモデル化するために開発されたメッセージパッシングフレームワークである。
本研究では,予測符号化のメッセージパス規則に依存するモデルを構築する。
提案したモデルは,帰納的タスクと帰納的タスクの両方において,標準的なモデルに匹敵する性能を示す。
論文 参考訳(メタデータ) (2022-12-09T03:58:22Z) - Directed Acyclic Graph Factorization Machines for CTR Prediction via
Knowledge Distillation [65.62538699160085]
本稿では,既存の複雑な相互作用モデルから,知識蒸留によるCTR予測のための高次特徴相互作用を学習するための非巡回グラフファクトリゼーションマシン(KD-DAGFM)を提案する。
KD-DAGFMは、オンラインとオフラインの両方の実験において、最先端のFLOPの21.5%未満で最高の性能を達成する。
論文 参考訳(メタデータ) (2022-11-21T03:09:42Z) - An improved neural network model for treatment effect estimation [3.1372269816123994]
本稿では,ニューラルネットワークアーキテクチャに基づく潜在的結果と妥当性スコアを予測するための新しいモデルを提案する。
数値実験により, 提案モデルでは, 最先端モデルと比較して, 処理効果推定性能が向上していることが示されている。
論文 参考訳(メタデータ) (2022-05-23T07:56:06Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
大規模知識グラフから抽出した情報に基づく自己監督は、言語モデルの一般化を改善することが示されている。
本研究では,言語モデルに適用可能な合成データを生成するための知識サンプリング戦略とサイズの影響について検討する。
論文 参考訳(メタデータ) (2022-05-21T19:49:04Z) - Multi-Branch Deep Radial Basis Function Networks for Facial Emotion
Recognition [80.35852245488043]
放射状基底関数(RBF)ユニットによって形成された複数の分岐で拡張されたCNNベースのアーキテクチャを提案する。
RBFユニットは、中間表現を用いて類似のインスタンスで共有される局所パターンをキャプチャする。
提案手法は,提案手法の競争力を高めるためのローカル情報の導入であることを示す。
論文 参考訳(メタデータ) (2021-09-07T21:05:56Z) - A Multi-Level Attention Model for Evidence-Based Fact Checking [58.95413968110558]
シーケンス構造をトレーニング可能な,シンプルなモデルを提案する。
Fact extract and VERification のための大規模データセットの結果、我々のモデルはグラフベースのアプローチよりも優れていることが示された。
論文 参考訳(メタデータ) (2021-06-02T05:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。