論文の概要: Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation
- arxiv url: http://arxiv.org/abs/2404.12238v1
- Date: Thu, 18 Apr 2024 14:57:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-19 12:12:06.877718
- Title: Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation
- Title(参考訳): 因果グラフ制約を持つニューラルネットワーク:治療効果推定の新しいアプローチ
- Authors: Roger Pros, Jordi Vitrià,
- Abstract要約: 因果グラフからの追加情報を考慮した新しいモデルNN-CGCを提案する。
本手法は因果グラフの不完全性に対して頑健であり,部分因果情報の使用は無視するよりも望ましいことを示す。
- 参考スコア(独自算出の注目度): 0.951494089949975
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, there has been a growing interest in using machine learning techniques for the estimation of treatment effects. Most of the best-performing methods rely on representation learning strategies that encourage shared behavior among potential outcomes to increase the precision of treatment effect estimates. In this paper we discuss and classify these models in terms of their algorithmic inductive biases and present a new model, NN-CGC, that considers additional information from the causal graph. NN-CGC tackles bias resulting from spurious variable interactions by implementing novel constraints on models, and it can be integrated with other representation learning methods. We test the effectiveness of our method using three different base models on common benchmarks. Our results indicate that our model constraints lead to significant improvements, achieving new state-of-the-art results in treatment effects estimation. We also show that our method is robust to imperfect causal graphs and that using partial causal information is preferable to ignoring it.
- Abstract(参考訳): 近年,治療効果の評価に機械学習技術を使うことへの関心が高まっている。
最も優れた手法のほとんどは、治療効果推定の精度を高めるために、潜在的成果間の共有行動を促進する表現学習戦略に依存している。
本稿では,これらのモデルをアルゴリズム的帰納バイアスの観点から論じ,その因果グラフからの追加情報を考慮した新しいモデルNN-CGCを提案する。
NN-CGCは、モデルに新しい制約を実装することで、刺激的な変数相互作用によるバイアスに対処し、他の表現学習手法と統合することができる。
提案手法の有効性を,共通ベンチマーク上で3つの異なるベースモデルを用いて検証する。
以上の結果から, モデル制約が改善し, 治療効果評価の新たな結果が得られたことが示唆された。
また,本手法は因果グラフの不完全性に対して頑健であり,因果情報の部分的利用が無視に有利であることを示す。
関連論文リスト
- Enhancing Training Data Attribution for Large Language Models with Fitting Error Consideration [74.09687562334682]
Debias and Denoise Attribution (DDA) と呼ばれる新しいトレーニングデータ属性法を導入する。
提案手法は既存のアプローチよりも優れており,平均91.64%のAUCを実現している。
DDAは、様々なソースとLLaMA2、QWEN2、Mistralのような異なるスケールのモデルに対して、強力な汎用性とスケーラビリティを示す。
論文 参考訳(メタデータ) (2024-10-02T07:14:26Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
そこで本研究では,機能シフトによるブラックボックスモデルの振る舞いを説明する新しい手法を提案する。
本稿では,最適輸送と共有値の概念を組み合わせた提案手法について,説明的性能推定として紹介する。
論文 参考訳(メタデータ) (2024-08-24T18:28:19Z) - C-XGBoost: A tree boosting model for causal effect estimation [8.246161706153805]
因果効果推定は、平均処理効果と、治療の条件平均処理効果を、利用可能なデータから得られる結果に推定することを目的としている。
本稿では,C-XGBoost という新たな因果推論モデルを提案する。
論文 参考訳(メタデータ) (2024-03-31T17:43:37Z) - Uplift Modeling based on Graph Neural Network Combined with Causal
Knowledge [9.005051998738134]
本稿では、因果知識と昇降値の見積を組み合わせたグラフニューラルネットワークに基づくフレームワークを提案する。
本手法は, 典型的なシミュレーションデータに小さな誤差を伴って, 昇降値の予測に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-14T07:21:00Z) - A PAC-Bayesian Perspective on the Interpolating Information Criterion [54.548058449535155]
補間系の性能に影響を及ぼす要因を特徴付ける一般モデルのクラスに対して,PAC-Bayes境界がいかに得られるかを示す。
オーバーパラメータ化モデルに対するテスト誤差が、モデルとパラメータの初期化スキームの組み合わせによって課される暗黙の正規化の品質に依存するかの定量化を行う。
論文 参考訳(メタデータ) (2023-11-13T01:48:08Z) - GIF: A General Graph Unlearning Strategy via Influence Function [63.52038638220563]
Graph Influence Function (GIF)は、削除されたデータにおける$epsilon$-massの摂動に応答してパラメータの変化を効率的に正確に推定できる、モデルに依存しない未学習の手法である。
我々は,4つの代表的GNNモデルと3つのベンチマークデータセットについて広範な実験を行い,未学習の有効性,モデルの有用性,未学習効率の観点からGIFの優位性を正当化する。
論文 参考訳(メタデータ) (2023-04-06T03:02:54Z) - From Causal Pairs to Causal Graphs [1.5469452301122175]
観測データから学習する因果構造は、非自明な課題である。
NIPS 2013 Workshop on Causality Challengeにより、我々は異なるアプローチを採り、可能な全てのグラフに確率分布を生成する。
本研究の目的は,この確率的情報に基づく新しい手法を提案し,その性能を従来の手法や最先端の手法と比較することである。
論文 参考訳(メタデータ) (2022-11-08T15:28:55Z) - Robust Causal Graph Representation Learning against Confounding Effects [21.380907101361643]
本稿では,ロバスト因果グラフ表現学習(RCGRL)を提案する。
RCGRLは、無条件のモーメント制約の下でインストゥルメンタル変数を生成するアクティブなアプローチを導入し、グラフ表現学習モデルにより、共同設立者を排除している。
論文 参考訳(メタデータ) (2022-08-18T01:31:25Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
治療のパーソナライズされた効果を見積もるのは複雑だが、普及している問題である。
ヘテロジニアス処理効果推定に関する機械学習文献の最近の進歩は、洗練されたが不透明なツールの多くを生み出した。
我々は、ポストホックな特徴重要度法を用いて、モデルの予測に影響を及ぼす特徴を特定する。
論文 参考訳(メタデータ) (2022-06-16T17:59:05Z) - An improved neural network model for treatment effect estimation [3.1372269816123994]
本稿では,ニューラルネットワークアーキテクチャに基づく潜在的結果と妥当性スコアを予測するための新しいモデルを提案する。
数値実験により, 提案モデルでは, 最先端モデルと比較して, 処理効果推定性能が向上していることが示されている。
論文 参考訳(メタデータ) (2022-05-23T07:56:06Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。