論文の概要: Natural Language Processing for Financial Regulation
- arxiv url: http://arxiv.org/abs/2311.08533v1
- Date: Tue, 14 Nov 2023 20:58:21 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 18:16:56.731901
- Title: Natural Language Processing for Financial Regulation
- Title(参考訳): 金融規制のための自然言語処理
- Authors: Ixandra Achitouv, Dragos Gorduza and Antoine Jacquier
- Abstract要約: 本稿では、金融規制の枠組みにおける自然言語処理技術の理解について述べる。
本稿では,自然言語処理の鍵となる構成要素の背景にある数学的概念を解説し,簡単な事前学習文変換モデルよりも優れた手法を概説する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This article provides an understanding of Natural Language Processing
techniques in the framework of financial regulation, more specifically in order
to perform semantic matching search between rules and policy when no dataset is
available for supervised learning. We outline how to outperform simple
pre-trained sentences-transformer models using freely available resources and
explain the mathematical concepts behind the key building blocks of Natural
Language Processing.
- Abstract(参考訳): 本稿では、金融規制の枠組みにおける自然言語処理技術の理解について、具体的には、教師あり学習にデータセットが利用できない場合、ルールとポリシー間のセマンティックマッチング検索を実行するためのものである。
本稿では,自然言語処理の鍵となる構成要素の背景にある数学的概念を解説し,簡単な事前学習文変換モデルよりも優れた手法を概説する。
関連論文リスト
- Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - On Conditional and Compositional Language Model Differentiable Prompting [75.76546041094436]
プロンプトは、下流タスクでうまく機能するために、凍結した事前訓練言語モデル(PLM)を適応するための効果的な方法であることが示されている。
タスク命令や入力メタデータを連続的なプロンプトに変換することを学習する新しいモデル Prompt Production System (PRopS) を提案する。
論文 参考訳(メタデータ) (2023-07-04T02:47:42Z) - Controlled Text Generation with Natural Language Instructions [74.88938055638636]
InstructCTGは、異なる制約を含む制御されたテキスト生成フレームワークである。
まず、既製のNLPツールと単純な動詞の組み合わせにより、自然文の基本的制約を抽出する。
制約の自然言語記述といくつかの実演を予測することにより、様々な種類の制約を組み込むために、事前訓練された言語モデルを微調整する。
論文 参考訳(メタデータ) (2023-04-27T15:56:34Z) - Benchmarking Language Models for Code Syntax Understanding [79.11525961219591]
事前学習された言語モデルは、自然言語処理とプログラム理解の両方において素晴らしい性能を示している。
本研究では,プログラムの構文構造を特定するための,最先端の事前訓練モデルの最初の徹底的なベンチマークを行う。
この結果から,既存のプログラミング言語の事前学習手法の限界が指摘され,構文構造をモデル化することの重要性が示唆された。
論文 参考訳(メタデータ) (2022-10-26T04:47:18Z) - Actuarial Applications of Natural Language Processing Using
Transformers: Case Studies for Using Text Features in an Actuarial Context [0.0]
このチュートリアルは、テキストデータをアクチュアリ分類と回帰タスクに組み込むことを実証する。
主な焦点はトランスフォーマーモデルを用いた手法である。
このケーススタディは、多言語設定と長い入力シーケンスに関連する課題に取り組む。
論文 参考訳(メタデータ) (2022-06-04T15:39:30Z) - RuleBert: Teaching Soft Rules to Pre-trained Language Models [21.69870624809201]
そこで我々は, PLM が与えられた仮説の確率で予測を返すべき, 事実とソフトルールを前提とした分類タスクを導入する。
本研究では, PLM がタスクの正確な確率の予測方法を学習できるように改良された損失関数を提案する。
評価結果から,学習時に見つからない論理的ルールであっても,得られた微調整モデルは非常に高い性能が得られることが示された。
論文 参考訳(メタデータ) (2021-09-24T16:19:25Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z) - Pre-trained Language Model Based Active Learning for Sentence Matching [18.48335957524662]
文マッチングのための事前学習型言語モデルに基づく能動的学習手法を提案する。
我々のアプローチは、ラベル付きトレーニングインスタンスを少なくすることで、より精度の高いものを実現できます。
論文 参考訳(メタデータ) (2020-10-12T08:24:36Z) - Guiding Symbolic Natural Language Grammar Induction via
Transformer-Based Sequence Probabilities [0.0]
自然言語を統括する構文規則を自動学習する手法を提案する。
この方法は、内部表現に言及することなく、トランスフォーマーにおける学習された言語知識を利用する。
提案手法の実証例を示し, 教師なしのシンボリックリンク-文法帰納法を導出する。
論文 参考訳(メタデータ) (2020-05-26T06:18:47Z) - Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer [64.22926988297685]
下流タスクで微調整される前に、まずデータリッチタスクでモデルが事前訓練されるトランスファーラーニングは、自然言語処理(NLP)において強力な手法として登場した。
本稿では,すべてのテキストベースの言語問題をテキスト・トゥ・テキスト・フォーマットに変換する統一フレームワークにより,NLPのためのトランスファー学習手法を導入する状況について検討する。
論文 参考訳(メタデータ) (2019-10-23T17:37:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。