Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism
- URL: http://arxiv.org/abs/2311.08536v1
- Date: Tue, 14 Nov 2023 21:02:27 GMT
- Title: Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism
- Authors: Amanie Azzam, Saba Sanami, and Amir G. Aghdam
- Abstract summary: Non-intrusive Load Monitoring (NILM) is an established technique for effective and cost-efficient electricity consumption management.
This paper presents a hybrid learning approach, consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory (BILSTM)
CNN-BILSTM model is adept at extracting both temporal (time-related) and spatial (location-related) features, allowing it to precisely identify energy consumption patterns at the appliance level.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-intrusive Load Monitoring (NILM) is an established technique for
effective and cost-efficient electricity consumption management. The method is
used to estimate appliance-level power consumption from aggregated power
measurements. This paper presents a hybrid learning approach, consisting of a
convolutional neural network (CNN) and a bidirectional long short-term memory
(BILSTM), featuring an integrated attention mechanism, all within the context
of disaggregating low-frequency power data. While prior research has been
mainly focused on high-frequency data disaggregation, our study takes a
distinct direction by concentrating on low-frequency data. The proposed hybrid
CNN-BILSTM model is adept at extracting both temporal (time-related) and
spatial (location-related) features, allowing it to precisely identify energy
consumption patterns at the appliance level. This accuracy is further enhanced
by the attention mechanism, which aids the model in pinpointing crucial parts
of the data for more precise event detection and load disaggregation. We
conduct simulations using the existing low-frequency REDD dataset to assess our
model performance. The results demonstrate that our proposed approach
outperforms existing methods in terms of accuracy and computation time.
Related papers
- Temporal Convolution-based Hybrid Model Approach with Representation Learning for Real-Time Acoustic Anomaly Detection [0.0]
This research introduces an innovative approach to Real-Time Acoustic Anomaly Detection.
Our method combines semi-supervised temporal convolution with representation learning and a hybrid model strategy with Temporal Convolutional Networks (TCN)
The proposed model demonstrates superior performance compared to established research in the field, underscoring the effectiveness of this approach.
arXiv Detail & Related papers (2024-10-25T17:50:48Z) - Federated Sequence-to-Sequence Learning for Load Disaggregation from Unbalanced Low-Resolution Smart Meter Data [5.460776507522276]
Non-Intrusive Load Monitoring (NILM) can enhance energy awareness and provide valuable insights for energy program design.
Existing NILM methods often rely on specialized devices to retrieve high-sampling complex signal data.
We propose a new approach using easily accessible weather data to achieve load disaggregation for a total of 12 appliances.
arXiv Detail & Related papers (2024-08-15T13:04:49Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Identification of Power System Oscillation Modes using Blind Source
Separation based on Copula Statistic [1.8741805956888702]
The dynamics of a power system with large penetration of renewable energy resources are becoming more nonlinear.
It is crucial to accurately identify the dynamical modes of oscillation when it is subject to disturbances to initiate appropriate preventive or corrective control actions.
We propose a high-order blind source identification (HOBI) algorithm based on the copula statistic to address these non-linear dynamics in modal analysis.
arXiv Detail & Related papers (2023-02-07T17:38:05Z) - Federated Learning for Energy-limited Wireless Networks: A Partial Model
Aggregation Approach [79.59560136273917]
limited communication resources, bandwidth and energy, and data heterogeneity across devices are main bottlenecks for federated learning (FL)
We first devise a novel FL framework with partial model aggregation (PMA)
The proposed PMA-FL improves 2.72% and 11.6% accuracy on two typical heterogeneous datasets.
arXiv Detail & Related papers (2022-04-20T19:09:52Z) - DriPP: Driven Point Processes to Model Stimuli Induced Patterns in M/EEG
Signals [62.997667081978825]
We develop a novel statistical point process model-called driven temporal point processes (DriPP)
We derive a fast and principled expectation-maximization (EM) algorithm to estimate the parameters of this model.
Results on standard MEG datasets demonstrate that our methodology reveals event-related neural responses.
arXiv Detail & Related papers (2021-12-08T13:07:21Z) - A Deep-Learning Intelligent System Incorporating Data Augmentation for
Short-Term Voltage Stability Assessment of Power Systems [9.299576471941753]
This paper proposes a novel deep-learning intelligent system incorporating data augmentation for STVSA of power systems.
Due to the unavailability of reliable quantitative criteria to judge the stability status for a specific power system, semi-supervised cluster learning is leveraged to obtain labeled samples.
conditional least squares generative adversarial networks (LSGAN)-based data augmentation is introduced to expand the original dataset.
arXiv Detail & Related papers (2021-12-05T11:40:54Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
Non-invasive techniques like magnetoencephalography (MEG) or electroencephalography (EEG) offer promise of non-invasive techniques.
The problem of source localization, or source imaging, poses however a high-dimensional statistical inference challenge.
We propose an ensemble of desparsified multi-task Lasso (ecd-MTLasso) to deal with this problem.
arXiv Detail & Related papers (2020-09-29T21:17:16Z) - Deep Anomaly Detection for Time-series Data in Industrial IoT: A
Communication-Efficient On-device Federated Learning Approach [40.992167455141946]
This paper proposes a new communication-efficient on-device federated learning (FL)-based deep anomaly detection framework for sensing time-series data in IIoT.
We first introduce a FL framework to enable decentralized edge devices to collaboratively train an anomaly detection model, which can improve its generalization ability.
Second, we propose an Attention Mechanism-based Convolutional Neural Network-Long Short Term Memory (AMCNN-LSTM) model to accurately detect anomalies.
Third, to adapt the proposed framework to the timeliness of industrial anomaly detection, we propose a gradient compression mechanism based on Top-textitk selection to
arXiv Detail & Related papers (2020-07-19T16:47:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.