Federated Sequence-to-Sequence Learning for Load Disaggregation from Unbalanced Low-Resolution Smart Meter Data
- URL: http://arxiv.org/abs/2409.00007v1
- Date: Thu, 15 Aug 2024 13:04:49 GMT
- Title: Federated Sequence-to-Sequence Learning for Load Disaggregation from Unbalanced Low-Resolution Smart Meter Data
- Authors: Xiangrui Li,
- Abstract summary: Non-Intrusive Load Monitoring (NILM) can enhance energy awareness and provide valuable insights for energy program design.
Existing NILM methods often rely on specialized devices to retrieve high-sampling complex signal data.
We propose a new approach using easily accessible weather data to achieve load disaggregation for a total of 12 appliances.
- Score: 5.460776507522276
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The importance of Non-Intrusive Load Monitoring (NILM) has been increasingly recognized, given that NILM can enhance energy awareness and provide valuable insights for energy program design. Many existing NILM methods often rely on specialized devices to retrieve high-sampling complex signal data and focus on the high consumption appliances, hindering their applicability in real-world applications, especially when smart meters only provide low-resolution active power readings for households. In this paper, we propose a new approach using easily accessible weather data to achieve load disaggregation for a total of 12 appliances, encompassing both high and low consumption, in scenarios with very low sampling rates (hourly). Moreover, We develop a federated learning (FL) model that builds upon a sequence-to-sequence model to fulfil load disaggregation without data sharing. Our experiments demonstrate that the FL framework - L2GD can effectively handle statistical heterogeneity and avoid overfitting problems. By incorporating weather data, our approach significantly improves the performance of NILM.
Related papers
- Benchmarking Active Learning for NILM [2.896640219222859]
Non-intrusive load monitoring (NILM) focuses on disaggregating total household power consumption into appliance-specific usage.
Many advanced NILM methods are based on neural networks that typically require substantial amounts of labeled appliance data.
We propose an active learning approach to selectively install appliance monitors in a limited number of houses.
arXiv Detail & Related papers (2024-11-24T12:22:59Z) - Learning with Less: Knowledge Distillation from Large Language Models via Unlabeled Data [54.934578742209716]
In real-world NLP applications, Large Language Models (LLMs) offer promising solutions due to their extensive training on vast datasets.
LLKD is an adaptive sample selection method that incorporates signals from both the teacher and student.
Our comprehensive experiments show that LLKD achieves superior performance across various datasets with higher data efficiency.
arXiv Detail & Related papers (2024-11-12T18:57:59Z) - Not All Attention is Needed: Parameter and Computation Efficient Transfer Learning for Multi-modal Large Language Models [73.48675708831328]
We propose a novel parameter and computation efficient tuning method for Multi-modal Large Language Models (MLLMs)
The Efficient Attention Skipping (EAS) method evaluates the attention redundancy and skips the less important MHAs to speed up inference.
The experiments show that EAS not only retains high performance and parameter efficiency, but also greatly speeds up inference speed.
arXiv Detail & Related papers (2024-03-22T14:20:34Z) - A PID-Controlled Non-Negative Tensor Factorization Model for Analyzing Missing Data in NILM [0.0]
Non-Intrusive Load Monitoring (NILM) has become an essential tool in smart grid and energy management.
Traditional imputation methods, such as linear and matrix factorization, struggle with nonlinear relationships and are sensitive to sparse data.
This paper proposes a Proportional-Integral-Derivative (PID) Non-Negative Latent Factorization of tensor (PNLF) model, which dynamically adjusts parameter gradients to improve convergence, stability, and accuracy.
arXiv Detail & Related papers (2024-03-09T10:01:49Z) - Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes [57.62036621319563]
We introduce CLLM, which leverages the prior knowledge of Large Language Models (LLMs) for data augmentation in the low-data regime.
We demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators.
arXiv Detail & Related papers (2023-12-19T12:34:46Z) - Low-Frequency Load Identification using CNN-BiLSTM Attention Mechanism [0.0]
Non-intrusive Load Monitoring (NILM) is an established technique for effective and cost-efficient electricity consumption management.
This paper presents a hybrid learning approach, consisting of a convolutional neural network (CNN) and a bidirectional long short-term memory (BILSTM)
CNN-BILSTM model is adept at extracting both temporal (time-related) and spatial (location-related) features, allowing it to precisely identify energy consumption patterns at the appliance level.
arXiv Detail & Related papers (2023-11-14T21:02:27Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Multi-Objective Optimization for UAV Swarm-Assisted IoT with Virtual
Antenna Arrays [55.736718475856726]
Unmanned aerial vehicle (UAV) network is a promising technology for assisting Internet-of-Things (IoT)
Existing UAV-assisted data harvesting and dissemination schemes require UAVs to frequently fly between the IoTs and access points.
We introduce collaborative beamforming into IoTs and UAVs simultaneously to achieve energy and time-efficient data harvesting and dissemination.
arXiv Detail & Related papers (2023-08-03T02:49:50Z) - Learning Task-Aware Energy Disaggregation: a Federated Approach [1.52292571922932]
Non-intrusive load monitoring (NILM) aims to find individual devices' power consumption profiles based on aggregated meter measurements.
Yet collecting such residential load datasets require both huge efforts and customers' approval on sharing metering data.
We propose a decentralized and task-adaptive learning scheme for NILM tasks, where nested meta learning and federated learning steps are designed for learning task-specific models collectively.
arXiv Detail & Related papers (2022-04-14T05:53:41Z) - FederatedNILM: A Distributed and Privacy-preserving Framework for
Non-intrusive Load Monitoring based on Federated Deep Learning [8.230120882304723]
This paper develops a distributed and privacy-preserving federated deep learning framework for NILM (FederatedNILM)
FederatedNILM combines federated learning with a state-of-the-art deep learning architecture to conduct NILM for the classification of typical states of household appliances.
arXiv Detail & Related papers (2021-08-08T08:56:40Z) - Learning representations with end-to-end models for improved remaining
useful life prognostics [64.80885001058572]
The remaining Useful Life (RUL) of equipment is defined as the duration between the current time and its failure.
We propose an end-to-end deep learning model based on multi-layer perceptron and long short-term memory layers (LSTM) to predict the RUL.
We will discuss how the proposed end-to-end model is able to achieve such good results and compare it to other deep learning and state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T16:45:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.