MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration
- URL: http://arxiv.org/abs/2311.08562v3
- Date: Wed, 27 Nov 2024 12:25:28 GMT
- Title: MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration
- Authors: Lin Xu, Zhiyuan Hu, Daquan Zhou, Hongyu Ren, Zhen Dong, Kurt Keutzer, See Kiong Ng, Jiashi Feng,
- Abstract summary: Large Language Models (LLMs) have significantly advanced natural language processing.<n>As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.<n>This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
- Score: 98.18244218156492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have significantly advanced natural language processing, demonstrating exceptional reasoning, tool usage, and memory capabilities. As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework that captures LLMs' reasoning, planning, collaboration, and other social abilities. This work introduces a novel competition-based benchmark framework specifically designed to assess LLMs within multi-agent settings, providing quantitative metrics to evaluate their judgment, reasoning, deception, self-awareness, cooperation, coordination, and rationality. We utilize two social deduction games alongside three game-theory scenarios to create diverse environments. Our frame is fortified with the probabilistic graphic modeling (PGM) method, enhancing the LLMs' capabilities in navigating complex social and cognitive dimensions. We evaluate seven LLMs, quantitatively highlighting a significant capability gap of over threefold between the strongest, GPT o1, and the weakest, Llama-2-70B. It also confirms that our PGM enhancement boosts the abilities of all selected models by an average of 37%. Our data and code can be found here https://github.com/cathyxl/MAgIC.
Related papers
- MultiAgentBench: Evaluating the Collaboration and Competition of LLM agents [59.825725526176655]
Large Language Models (LLMs) have shown remarkable capabilities as autonomous agents.
Existing benchmarks either focus on single-agent tasks or are confined to narrow domains, failing to capture the dynamics of multi-agent coordination and competition.
We introduce MultiAgentBench, a benchmark designed to evaluate LLM-based multi-agent systems across diverse, interactive scenarios.
arXiv Detail & Related papers (2025-03-03T05:18:50Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
Large Language Models (LLMs) exhibit remarkable performance across various language-related tasks.
LLMs have demonstrated emergent abilities extending beyond their core functions.
This paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities.
arXiv Detail & Related papers (2025-01-03T21:04:49Z) - MageBench: Bridging Large Multimodal Models to Agents [90.59091431806793]
LMMs have shown impressive visual understanding capabilities, with the potential to be applied in agents.
Existing benchmarks mostly assess their reasoning abilities in language part.
MageBench is a reasoning capability oriented multimodal agent benchmark.
arXiv Detail & Related papers (2024-12-05T17:08:19Z) - FAC$^2$E: Better Understanding Large Language Model Capabilities by Dissociating Language and Cognition [56.76951887823882]
Large language models (LLMs) are primarily evaluated by overall performance on various text understanding and generation tasks.
We present FAC$2$E, a framework for Fine-grAined and Cognition-grounded LLMs' Capability Evaluation.
arXiv Detail & Related papers (2024-02-29T21:05:37Z) - LLMArena: Assessing Capabilities of Large Language Models in Dynamic
Multi-Agent Environments [35.926581910260076]
We introduce LLMArena, a framework for evaluating the capabilities of large language models in multi-agent dynamic environments.
LLArena employs Trueskill scoring to assess crucial abilities in LLM agents, including spatial reasoning, strategic planning, numerical reasoning, risk assessment, communication, opponent modeling, and team collaboration.
We conduct an extensive experiment and human evaluation among different sizes and types of LLMs, showing that LLMs still have a significant journey ahead in their development towards becoming fully autonomous agents.
arXiv Detail & Related papers (2024-02-26T11:31:48Z) - Dynamic Evaluation of Large Language Models by Meta Probing Agents [44.20074234421295]
We propose meta probing agents (MPA) to evaluate large language models (LLMs)
MPA is the key component of DyVal 2, which naturally extends the previous DyValcitepzhu2023dyval.
MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory.
arXiv Detail & Related papers (2024-02-21T06:46:34Z) - Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants [8.573156248244695]
This paper focuses on identifying and understanding the conditions and contexts in which LLMs can be effectively and safely deployed.
We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to assess each model's code generation capabilities.
We collected 61 code outputs and analyzed them across several aspects: functionality, security, performance, complexity, and reliability.
arXiv Detail & Related papers (2024-02-01T15:49:47Z) - LMRL Gym: Benchmarks for Multi-Turn Reinforcement Learning with Language
Models [56.25156596019168]
This paper introduces the LMRL-Gym benchmark for evaluating multi-turn RL for large language models (LLMs)
Our benchmark consists of 8 different language tasks, which require multiple rounds of language interaction and cover a range of tasks in open-ended dialogue and text games.
arXiv Detail & Related papers (2023-11-30T03:59:31Z) - Language Agent Tree Search Unifies Reasoning Acting and Planning in Language Models [31.509994889286183]
We introduce Language Agent Tree Search (LATS) -- the first general framework that synergizes the capabilities of language models (LMs) in reasoning, acting, and planning.
A key feature of our approach is the incorporation of an environment for external feedback, which offers a more deliberate and adaptive problem-solving mechanism.
LATS achieves state-of-the-art pass@1 accuracy (92.7%) for programming on HumanEval with GPT-4 and demonstrates gradient-free performance (average score of 75.9) comparable to gradient-based fine-tuning for web navigation on WebShop with GPT
arXiv Detail & Related papers (2023-10-06T17:55:11Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - LAMM: Language-Assisted Multi-Modal Instruction-Tuning Dataset,
Framework, and Benchmark [81.42376626294812]
We present Language-Assisted Multi-Modal instruction tuning dataset, framework, and benchmark.
Our aim is to establish LAMM as a growing ecosystem for training and evaluating MLLMs.
We present a comprehensive dataset and benchmark, which cover a wide range of vision tasks for 2D and 3D vision.
arXiv Detail & Related papers (2023-06-11T14:01:17Z) - Multi-Agent Collaboration: Harnessing the Power of Intelligent LLM
Agents [0.0]
We present a novel framework for enhancing the capabilities of large language models (LLMs) by leveraging the power of multi-agent systems.
Our framework introduces a collaborative environment where multiple intelligent agent components, each with distinctive attributes and roles, work together to handle complex tasks more efficiently and effectively.
arXiv Detail & Related papers (2023-06-05T23:55:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.