Dynamic Evaluation of Large Language Models by Meta Probing Agents
- URL: http://arxiv.org/abs/2402.14865v2
- Date: Fri, 7 Jun 2024 09:19:45 GMT
- Title: Dynamic Evaluation of Large Language Models by Meta Probing Agents
- Authors: Kaijie Zhu, Jindong Wang, Qinlin Zhao, Ruochen Xu, Xing Xie,
- Abstract summary: We propose meta probing agents (MPA) to evaluate large language models (LLMs)
MPA is the key component of DyVal 2, which naturally extends the previous DyValcitepzhu2023dyval.
MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory.
- Score: 44.20074234421295
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluation of large language models (LLMs) has raised great concerns in the community due to the issue of data contamination. Existing work designed evaluation protocols using well-defined algorithms for specific tasks, which cannot be easily extended to diverse scenarios. Moreover, current evaluation benchmarks can only provide the overall benchmark results and cannot support a fine-grained and multifaceted analysis of LLMs' abilities. In this paper, we propose meta probing agents (MPA), a general dynamic evaluation protocol inspired by psychometrics to evaluate LLMs. MPA is the key component of DyVal 2, which naturally extends the previous DyVal~\citep{zhu2023dyval}. MPA designs the probing and judging agents to automatically transform an original evaluation problem into a new one following psychometric theory on three basic cognitive abilities: language understanding, problem solving, and domain knowledge. These basic abilities are also dynamically configurable, allowing multifaceted analysis. We conducted extensive evaluations using MPA and found that most LLMs achieve poorer performance, indicating room for improvement. Our multifaceted analysis demonstrated the strong correlation between the basic abilities and an implicit Matthew effect on model size, i.e., larger models possess stronger correlations of the abilities. MPA can also be used as a data augmentation approach to enhance LLMs. Code is available at: https://github.com/microsoft/promptbench.
Related papers
- CORDIAL: Can Multimodal Large Language Models Effectively Understand Coherence Relationships? [5.246809683975664]
This study emphasizes the need to move beyond similarity-based metrics and adopt a discourse-driven framework for evaluating MLLMs.
Our benchmark, CORDIAL, encompasses a broad spectrum of Coherence Relations across 3 different discourse domains at varying levels of granularity.
arXiv Detail & Related papers (2025-02-16T22:54:44Z) - Are Your LLMs Capable of Stable Reasoning? [38.03049704515947]
Large Language Models (LLMs) have demonstrated remarkable progress in complex reasoning tasks.
However, a significant discrepancy persists between benchmark performances and real-world applications.
We introduce G-Pass@k, a novel evaluation metric that provides a continuous assessment of model performance.
We present LiveMathBench, a dynamic benchmark comprising challenging, contemporary mathematical problems.
arXiv Detail & Related papers (2024-12-17T18:12:47Z) - MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
Multimodal Large Language Models (MLLMs) have garnered increased attention from both industry and academia.
In the development process, evaluation is critical since it provides intuitive feedback and guidance on improving models.
This work aims to offer researchers an easy grasp of how to effectively evaluate MLLMs according to different needs and to inspire better evaluation methods.
arXiv Detail & Related papers (2024-11-22T18:59:54Z) - DARG: Dynamic Evaluation of Large Language Models via Adaptive Reasoning Graph [70.79413606968814]
We introduce Dynamic Evaluation of LLMs via Adaptive Reasoning Graph Evolvement (DARG) to dynamically extend current benchmarks with controlled complexity and diversity.
Specifically, we first extract the reasoning graphs of data points in current benchmarks and then perturb the reasoning graphs to generate novel testing data.
Such newly generated test samples can have different levels of complexity while maintaining linguistic diversity similar to the original benchmarks.
arXiv Detail & Related papers (2024-06-25T04:27:53Z) - CogBench: a large language model walks into a psychology lab [12.981407327149679]
This paper introduces CogBench, a benchmark that includes ten behavioral metrics derived from seven cognitive psychology experiments.
We apply CogBench to 35 large language models (LLMs) and analyze this data using statistical multilevel modeling techniques.
We find that open-source models are less risk-prone than proprietary models and that fine-tuning on code does not necessarily enhance LLMs' behavior.
arXiv Detail & Related papers (2024-02-28T10:43:54Z) - AQA-Bench: An Interactive Benchmark for Evaluating LLMs' Sequential
Reasoning Ability [29.1826948551409]
AQA-Bench is a novel benchmark to assess the sequential reasoning capabilities of large language models.
We build AQA-Bench with three different algorithms, namely binary search, depth-first search, and breadth-first search.
Our investigations reveal several interesting findings.
arXiv Detail & Related papers (2024-02-14T18:59:33Z) - Entropy-Regularized Token-Level Policy Optimization for Language Agent Reinforcement [67.1393112206885]
Large Language Models (LLMs) have shown promise as intelligent agents in interactive decision-making tasks.
We introduce Entropy-Regularized Token-level Policy Optimization (ETPO), an entropy-augmented RL method tailored for optimizing LLMs at the token level.
We assess the effectiveness of ETPO within a simulated environment that models data science code generation as a series of multi-step interactive tasks.
arXiv Detail & Related papers (2024-02-09T07:45:26Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in Cognition, Adaptability, Rationality and Collaboration [98.18244218156492]
Large Language Models (LLMs) have significantly advanced natural language processing.
As their applications expand into multi-agent environments, there arises a need for a comprehensive evaluation framework.
This work introduces a novel competition-based benchmark framework to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - EpiK-Eval: Evaluation for Language Models as Epistemic Models [16.485951373967502]
We introduce EpiK-Eval, a novel question-answering benchmark tailored to evaluate LLMs' proficiency in formulating a coherent and consistent knowledge representation from segmented narratives.
We argue that these shortcomings stem from the intrinsic nature of prevailing training objectives.
The findings from this study offer insights for developing more robust and reliable LLMs.
arXiv Detail & Related papers (2023-10-23T21:15:54Z) - DyVal: Dynamic Evaluation of Large Language Models for Reasoning Tasks [112.66827096358857]
We introduce DyVal, a protocol for dynamic evaluation of large language models (LLMs)
Based on our framework, we build graph-informed DyVal by leveraging the structural advantage of directed acyclic graphs.
We evaluate various LLMs ranging from Flan-T5-large to GPT-3.5-Turbo and GPT-4.
arXiv Detail & Related papers (2023-09-29T12:04:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.