Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants
- URL: http://arxiv.org/abs/2402.00689v1
- Date: Thu, 1 Feb 2024 15:49:47 GMT
- Title: Ocassionally Secure: A Comparative Analysis of Code Generation
Assistants
- Authors: Ran Elgedawy, John Sadik, Senjuti Dutta, Anuj Gautam, Konstantinos
Georgiou, Farzin Gholamrezae, Fujiao Ji, Kyungchan Lim, Qian Liu, and Scott
Ruoti
- Abstract summary: This paper focuses on identifying and understanding the conditions and contexts in which LLMs can be effectively and safely deployed.
We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to assess each model's code generation capabilities.
We collected 61 code outputs and analyzed them across several aspects: functionality, security, performance, complexity, and reliability.
- Score: 8.573156248244695
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: $ $Large Language Models (LLMs) are being increasingly utilized in various
applications, with code generations being a notable example. While previous
research has shown that LLMs have the capability to generate both secure and
insecure code, the literature does not take into account what factors help
generate secure and effective code. Therefore in this paper we focus on
identifying and understanding the conditions and contexts in which LLMs can be
effectively and safely deployed in real-world scenarios to generate quality
code. We conducted a comparative analysis of four advanced LLMs--GPT-3.5 and
GPT-4 using ChatGPT and Bard and Gemini from Google--using 9 separate tasks to
assess each model's code generation capabilities. We contextualized our study
to represent the typical use cases of a real-life developer employing LLMs for
everyday tasks as work. Additionally, we place an emphasis on security
awareness which is represented through the use of two distinct versions of our
developer persona. In total, we collected 61 code outputs and analyzed them
across several aspects: functionality, security, performance, complexity, and
reliability. These insights are crucial for understanding the models'
capabilities and limitations, guiding future development and practical
applications in the field of automated code generation.
Related papers
- Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - HexaCoder: Secure Code Generation via Oracle-Guided Synthetic Training Data [60.75578581719921]
Large language models (LLMs) have shown great potential for automatic code generation.
Recent studies highlight that many LLM-generated code contains serious security vulnerabilities.
We introduce HexaCoder, a novel approach to enhance the ability of LLMs to generate secure codes.
arXiv Detail & Related papers (2024-09-10T12:01:43Z) - INDICT: Code Generation with Internal Dialogues of Critiques for Both Security and Helpfulness [110.6921470281479]
We introduce INDICT: a new framework that empowers large language models with Internal Dialogues of Critiques for both safety and helpfulness guidance.
The internal dialogue is a dual cooperative system between a safety-driven critic and a helpfulness-driven critic.
We observed that our approach can provide an advanced level of critiques of both safety and helpfulness analysis, significantly improving the quality of output codes.
arXiv Detail & Related papers (2024-06-23T15:55:07Z) - Can We Trust Large Language Models Generated Code? A Framework for In-Context Learning, Security Patterns, and Code Evaluations Across Diverse LLMs [2.7138982369416866]
Large Language Models (LLMs) have revolutionized automated code generation in software engineering.
However, concerns have arisen regarding the security and quality of the generated code.
Our research aims to tackle these issues by introducing a framework for secure behavioral learning of LLMs.
arXiv Detail & Related papers (2024-06-18T11:29:34Z) - A Survey on Large Language Models for Code Generation [9.555952109820392]
Large Language Models (LLMs) have garnered remarkable advancements across diverse code-related tasks.
This survey aims to bridge the gap between academia and practical development by providing a comprehensive and up-to-date literature review.
arXiv Detail & Related papers (2024-06-01T17:48:15Z) - How Far Have We Gone in Binary Code Understanding Using Large Language Models [51.527805834378974]
We propose a benchmark to evaluate the effectiveness of Large Language Models (LLMs) in binary code understanding.
Our evaluations reveal that existing LLMs can understand binary code to a certain extent, thereby improving the efficiency of binary code analysis.
arXiv Detail & Related papers (2024-04-15T14:44:08Z) - Copilot Evaluation Harness: Evaluating LLM-Guided Software Programming [12.355284125578342]
Large Language Models (LLMs) have become a focal point in modern software development.
LLMs offer the potential to significantly augment developer productivity by serving as intelligent, chat-driven programming assistants.
However, each system requires the LLM to be honed to its set of workspaces to ensure the best performance.
arXiv Detail & Related papers (2024-02-22T03:51:34Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
Large language models (LLMs) are trained on a combination of natural language and formal language (code)
Code translates high-level goals into executable steps, featuring standard syntax, logical consistency, abstraction, and modularity.
arXiv Detail & Related papers (2024-01-01T16:51:20Z) - MAgIC: Investigation of Large Language Model Powered Multi-Agent in
Cognition, Adaptability, Rationality and Collaboration [102.41118020705876]
Large Language Models (LLMs) have marked a significant advancement in the field of natural language processing.
As their applications extend into multi-agent environments, a need has arisen for a comprehensive evaluation framework.
This work introduces a novel benchmarking framework specifically tailored to assess LLMs within multi-agent settings.
arXiv Detail & Related papers (2023-11-14T21:46:27Z) - SALLM: Security Assessment of Generated Code [0.5137309756089941]
This paper describes SALLM, a framework to benchmark Large Language Models' abilities to generate secure code systematically.
The framework has three major components: a novel dataset of security-centric Python prompts, assessment techniques to evaluate the generated code, and novel metrics to evaluate the models' performance from the perspective of secure code generation.
arXiv Detail & Related papers (2023-11-01T22:46:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.