論文の概要: Formal Proofs as Structured Explanations: Proposing Several Tasks on
Explainable Natural Language Inference
- arxiv url: http://arxiv.org/abs/2311.08637v1
- Date: Wed, 15 Nov 2023 01:24:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 17:54:40.458730
- Title: Formal Proofs as Structured Explanations: Proposing Several Tasks on
Explainable Natural Language Inference
- Title(参考訳): 構造的説明としての形式的証明:説明可能な自然言語推論のいくつかのタスクの提案
- Authors: Lasha Abzianidze
- Abstract要約: 構造化された説明を用いてNLIタスクを定義する方法を示す。
提案したタスクは、説明の粒度で定義される難易度に応じて順序付けすることができる。
- 参考スコア(独自算出の注目度): 0.16317061277457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this position paper, we propose a way of exploiting formal proofs to put
forward several explainable natural language inference (NLI) tasks. The formal
proofs will be produced by a reliable and high-performing logic-based NLI
system. Taking advantage of the in-depth information available in the generated
formal proofs, we show how it can be used to define NLI tasks with structured
explanations. The proposed tasks can be ordered according to difficulty defined
in terms of the granularity of explanations. We argue that the tasks will
suffer with substantially fewer shortcomings than the existing explainable NLI
tasks (or datasets).
- Abstract(参考訳): 本稿では,いくつかの説明可能な自然言語推論(nli)タスクを行うための形式的証明の活用法を提案する。
形式的証明は、信頼性が高く高性能な論理ベースのNLIシステムによって作成される。
生成した形式的証明で得られる詳細な情報を利用して,nliタスクを構造化された説明文で定義する方法を示す。
提案するタスクは,説明の粒度の観点から定義された難易度に応じて順序付けできる。
我々は、既存の説明可能なNLIタスク(またはデータセット)よりも、タスクの欠点が大幅に少なくなることを論じる。
関連論文リスト
- Verification and Refinement of Natural Language Explanations through LLM-Symbolic Theorem Proving [13.485604499678262]
本稿では,Large Language Models(LLMs)とTheorem Provers(TPs)の統合による自然言語説明の検証と改善について検討する。
本稿では, TPとLPMを統合して説明文の生成と定式化を行う, Explanation-Refiner というニューロシンボリック・フレームワークを提案する。
代わりに、TPは説明の論理的妥当性を公式に保証し、その後の改善のためのフィードバックを生成するために使用される。
論文 参考訳(メタデータ) (2024-05-02T15:20:01Z) - An Incomplete Loop: Deductive, Inductive, and Abductive Learning in Large Language Models [99.31449616860291]
現代の言語モデル(LM)は、異なる方法で新しいタスクを実行することを学べる。
次の命令では、ターゲットタスクは自然言語で明示的に記述され、少数ショットプロンプトでは、タスクは暗黙的に指定される。
命令推論では、LMはインコンテキストの例を示し、自然言語のタスク記述を生成するように促される。
論文 参考訳(メタデータ) (2024-04-03T19:31:56Z) - Can LLMs Produce Faithful Explanations For Fact-checking? Towards
Faithful Explainable Fact-Checking via Multi-Agent Debate [75.10515686215177]
大規模言語モデル(LLM)はテキスト生成に優れるが、事実チェックにおいて忠実な説明を生成する能力は依然として過小評価されている。
多様な役割を持つエージェントとして複数のLSMを利用するマルチエージェント・デベート・リファインメント(MADR)フレームワークを提案する。
MADRは、最終的な説明が厳密な検証を行い、不誠実な要素の可能性を著しく低減し、提示された証拠と密接に一致させることを保証する。
論文 参考訳(メタデータ) (2024-02-12T04:32:33Z) - FaithLM: Towards Faithful Explanations for Large Language Models [67.29893340289779]
大きな言語モデル(LLM)は、内部知識と推論能力を活用することで複雑なタスクに対処するのに熟練している。
これらのモデルのブラックボックスの性質は、意思決定プロセスを説明するタスクを複雑にしている。
自然言語 (NL) による LLM の決定を説明するために FaithLM を紹介した。
論文 参考訳(メタデータ) (2024-02-07T09:09:14Z) - Logic-Scaffolding: Personalized Aspect-Instructed Recommendation
Explanation Generation using LLMs [20.446594942586604]
我々は、アスペクトベースの説明とチェーン・オブ・思想のアイデアを組み合わせて、中間的推論ステップを通じて説明を生成するLogic-Scaffoldingというフレームワークを提案する。
本稿では,フレームワーク構築の経験を共有し,その結果を探索するためのインタラクティブなデモンストレーションを行う。
論文 参考訳(メタデータ) (2023-12-22T00:30:10Z) - Neuro-Symbolic Integration Brings Causal and Reliable Reasoning Proofs [95.07757789781213]
LLMの複雑な推論には2行のアプローチが採用されている。
1行の作業は様々な推論構造を持つLLMを誘導し、構造出力は自然に中間推論ステップと見なすことができる。
他方の行では、LCMのない宣言的解法を用いて推論処理を行い、推論精度は向上するが、解法のブラックボックスの性質により解釈性に欠ける。
具体的には,Prologインタプリタが生成した中間検索ログにアクセスし,人間可読推論に解釈可能であることを示す。
論文 参考訳(メタデータ) (2023-11-16T11:26:21Z) - Parrot Mind: Towards Explaining the Complex Task Reasoning of Pretrained Large Language Models with Template-Content Structure [66.33623392497599]
テンプレート・コンテント構造(T-C構造)と呼ばれる構造は指数レベルから線形レベルへの可能な空間を減少させることができることを示す。
モデルがタスク構成を達成でき、線形から対数への学習に必要なスペースをさらに削減できることを実証する。
論文 参考訳(メタデータ) (2023-10-09T06:57:45Z) - Trustworthy Formal Natural Language Specifications [3.8073142980733]
本稿では、自然言語の表現的サブセットで書かれた仕様を構築できることを示す。
モジュール的に形式化された英語のサブセットで仕様を提供する手段を実装し、それらを形式的なクレームに自動的に変換する。
我々は,各単語の解釈方法と文の構造を用いて意味を計算したことを示す証明証明書を作成した。
論文 参考訳(メタデータ) (2023-10-05T20:41:47Z) - From Robustness to Explainability and Back Again [0.685316573653194]
本稿では,形式的説明可能性のスケーラビリティの限界に対処し,形式的説明性を計算するための新しいアルゴリズムを提案する。
提案アルゴリズムは、その代わりに多数のロバストネスクエリに応答して説明を計算し、そのようなクエリの数は、機能数に対して最も線形である。
提案手法の有効性を検証する実験を行った。
論文 参考訳(メタデータ) (2023-06-05T17:21:05Z) - Explanation Selection Using Unlabeled Data for Chain-of-Thought
Prompting [80.9896041501715]
非専門家によって書かれたオフ・ザ・シェルフの説明のように、タスクのために"チューニング"されていない説明は、中途半端なパフォーマンスをもたらす可能性がある。
本稿では,ブラックボックス方式で説明拡散プロンプトを最適化する方法の課題に対処する。
論文 参考訳(メタデータ) (2023-02-09T18:02:34Z) - NILE : Natural Language Inference with Faithful Natural Language
Explanations [10.074153632701952]
ラベル特定説明(NILE)に対する自然言語推論を提案する。
NILEは、ラベル固有の説明を自動生成し、その忠実な説明とともにラベルを作成する新しいNLI手法である。
我々は, NILE の説明の忠実さを, 対応する説明に対する決定の敏感さの観点から論じる。
論文 参考訳(メタデータ) (2020-05-25T13:56:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。