論文の概要: Reasoning-Grounded Natural Language Explanations for Language Models
- arxiv url: http://arxiv.org/abs/2503.11248v1
- Date: Fri, 14 Mar 2025 10:00:03 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-17 13:09:11.141415
- Title: Reasoning-Grounded Natural Language Explanations for Language Models
- Title(参考訳): 言語モデルのための推論型自然言語記述法
- Authors: Vojtech Cahlik, Rodrigo Alves, Pavel Kordik,
- Abstract要約: 本稿では,忠実な自然言語説明を得るための大規模言語モデル説明可能性手法を提案する。
トークンのシーケンスに変換されると、推論プロセスの出力がモデルコンテキストの一部となる。
また,提案手法を用いることで,回答の質を向上できることを示す。
- 参考スコア(独自算出の注目度): 2.7855886538423182
- License:
- Abstract: We propose a large language model explainability technique for obtaining faithful natural language explanations by grounding the explanations in a reasoning process. When converted to a sequence of tokens, the outputs of the reasoning process can become part of the model context and later be decoded to natural language as the model produces either the final answer or the explanation. To improve the faithfulness of the explanations, we propose to use a joint predict-explain approach, in which the answers and explanations are inferred directly from the reasoning sequence, without the explanations being dependent on the answers and vice versa. We demonstrate the plausibility of the proposed technique by achieving a high alignment between answers and explanations in several problem domains, observing that language models often simply copy the partial decisions from the reasoning sequence into the final answers or explanations. Furthermore, we show that the proposed use of reasoning can also improve the quality of the answers.
- Abstract(参考訳): 本稿では, 推論過程における説明を根拠として, 忠実な自然言語説明を得るための大規模言語モデル説明可能性手法を提案する。
トークンの列に変換されると、推論プロセスの出力はモデルコンテキストの一部となり、モデルが最終的な答えまたは説明を生成するため、後に自然言語に復号される。
説明の忠実さを改善するために,回答と説明を推論シーケンスから直接推測する共同予測記述手法を提案する。
提案手法の妥当性は,いくつかの問題領域における解答と説明の高整合性を達成することで実証され,言語モデルが推論シーケンスから最終的な解答や説明への部分的決定を単純にコピーすることが少なくない。
さらに,提案手法を用いることで,回答の質を向上できることを示す。
関連論文リスト
- Reasoning with Natural Language Explanations [15.281385727331473]
説明は人間の合理性の根幹をなす特徴であり、学習と一般化を支えている。
自然言語推論(NLI)の研究は、学習や推論において説明が果たす役割を再考し始めている。
論文 参考訳(メタデータ) (2024-10-05T13:15:24Z) - Towards More Faithful Natural Language Explanation Using Multi-Level
Contrastive Learning in VQA [7.141288053123662]
視覚的質問応答(VQA-NLE)における自然言語の説明は,ブラックボックスシステムに対するユーザの信頼を高めるために,自然言語文を生成することによって,モデルの意思決定プロセスを説明することを目的としている。
既存のポストホックな説明は、人間の論理的推論と常に一致している訳ではなく、1) 誘惑的不満足な説明は、生成した説明が論理的に答えに繋がらないこと、2) 現実的不整合性、2) 画像上の事実を考慮せずに解答の反事実的説明を偽示すること、3) 意味的摂動の過敏性、モデルは、小さな摂動によって引き起こされる意味的変化を認識できないこと、である。
論文 参考訳(メタデータ) (2023-12-21T05:51:55Z) - Abductive Commonsense Reasoning Exploiting Mutually Exclusive
Explanations [118.0818807474809]
帰納的推論は、イベントのもっともらしい説明を見つけることを目的としている。
自然言語処理における帰納的推論のための既存のアプローチは、しばしば監督のために手動で生成されたアノテーションに依存している。
この研究は、ある文脈に対して、説明のサブセットのみが正しいという事実を活用する、帰納的コモンセンス推論のアプローチを提案する。
論文 参考訳(メタデータ) (2023-05-24T01:35:10Z) - MetaLogic: Logical Reasoning Explanations with Fine-Grained Structure [129.8481568648651]
複雑な実生活シナリオにおけるモデルの論理的推論能力を調べるためのベンチマークを提案する。
推論のマルチホップ連鎖に基づいて、説明形式は3つの主成分を含む。
この新たな説明形式を用いて,現在のベストモデルの性能を評価した。
論文 参考訳(メタデータ) (2022-10-22T16:01:13Z) - Scientific Explanation and Natural Language: A Unified
Epistemological-Linguistic Perspective for Explainable AI [2.7920304852537536]
本稿では,理論と実践のギャップを科学的説明の概念に埋めることを目的として,科学的領域に焦点を当てた。
定量的および定性的手法の混合により、本研究では以下の主要な結論を導出することができる。
論文 参考訳(メタデータ) (2022-05-03T22:31:42Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Human Interpretation of Saliency-based Explanation Over Text [65.29015910991261]
テキストデータ上でのサリエンシに基づく説明について検討する。
人はしばしば説明を誤って解釈する。
本稿では,過度知覚と過小認識のモデル推定に基づいて,サリエンシを調整する手法を提案する。
論文 参考訳(メタデータ) (2022-01-27T15:20:32Z) - Discrete Reasoning Templates for Natural Language Understanding [79.07883990966077]
我々は,複雑な質問をより単純な質問に分解する手法を提案する。
事前定義された推論テンプレートの指示に従って最終回答を導出する。
我々のアプローチは、解釈可能でありながら最先端技術と競合し、監督をほとんど必要としないことを示す。
論文 参考訳(メタデータ) (2021-04-05T18:56:56Z) - ExplanationLP: Abductive Reasoning for Explainable Science Question
Answering [4.726777092009554]
本稿では,帰納的推論問題としての質問応答について考察する。
それぞれの選択に対して妥当な説明を構築し、最終回答として最適な説明で候補を選択する。
提案システムであるExplainationLPは,各候補の回答に対して,関連事実の重み付きグラフを構築して説明を行う。
論文 参考訳(メタデータ) (2020-10-25T14:49:24Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。