Safer-Instruct: Aligning Language Models with Automated Preference Data
- URL: http://arxiv.org/abs/2311.08685v3
- Date: Sun, 31 Mar 2024 22:42:03 GMT
- Title: Safer-Instruct: Aligning Language Models with Automated Preference Data
- Authors: Taiwei Shi, Kai Chen, Jieyu Zhao,
- Abstract summary: Reinforcement learning from human feedback is a vital strategy for enhancing model capability in language models.
We present Safer-Instruct, a novel pipeline for automatically constructing large-scale preference data.
Our approach leverages reversed instruction tuning, instruction induction, and expert model evaluation to efficiently generate high-quality preference data.
- Score: 20.177660013450176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Reinforcement learning from human feedback (RLHF) is a vital strategy for enhancing model capability in language models. However, annotating preference data for RLHF is a resource-intensive and creativity-demanding process, while existing automatic generation methods face limitations in data diversity and quality. In response, we present Safer-Instruct, a novel pipeline for automatically constructing large-scale preference data. Our approach leverages reversed instruction tuning, instruction induction, and expert model evaluation to efficiently generate high-quality preference data without human annotators. To verify the effectiveness of Safer-Instruct, we apply the pipeline to construct a safety preference dataset as a case study. Finetuning an Alpaca model on this synthetic dataset not only demonstrates improved harmlessness but also outperforms models fine-tuned on human-annotated safety preference data, all the while maintaining a competitive edge in downstream tasks. Importantly, our Safer-Instruct framework is versatile and can be applied to generate preference data across various domains, extending its utility beyond safety preferences. It addresses the challenges in preference data acquisition and advances the development of more capable and responsible AI systems. For dataset and code implementation, see https://github.com/uscnlp-lime/safer-instruct
Related papers
- Rule Based Rewards for Language Model Safety [14.444217964594108]
Rule Based Rewards (RBR) uses a collection of rules for desired or undesired behaviors.
RBRs are an effective training method, achieving an F1 score of 97.1, compared to a human-feedback baseline of 91.7.
arXiv Detail & Related papers (2024-11-02T02:22:21Z) - Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Online Self-Preferring Language Models [34.22412851864247]
Online Self-Preferring (OSP) language models learn from self-generated response pairs and self-judged preference strengths.
OSP achieves state-of-the-art alignment performance across various metrics in two widely used human preference datasets.
arXiv Detail & Related papers (2024-05-23T02:13:34Z) - Linear Alignment: A Closed-form Solution for Aligning Human Preferences without Tuning and Feedback [70.32795295142648]
Linear alignment is a novel algorithm that aligns language models with human preferences in one single inference step.
Experiments on both general and personalized preference datasets demonstrate that linear alignment significantly enhances the performance and efficiency of LLM alignment.
arXiv Detail & Related papers (2024-01-21T10:46:23Z) - PILoRA: Prototype Guided Incremental LoRA for Federated Class-Incremental Learning [41.984652077669104]
Experimental results on standard datasets indicate that our method outperforms the state-of-the-art approaches significantly.
Our method exhibits strong robustness and superiority in different settings and degrees of data heterogeneity.
arXiv Detail & Related papers (2024-01-04T06:46:19Z) - Direct Preference Optimization: Your Language Model is Secretly a Reward Model [119.65409513119963]
We introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form.
The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight.
Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods.
arXiv Detail & Related papers (2023-05-29T17:57:46Z) - Just Fine-tune Twice: Selective Differential Privacy for Large Language
Models [69.66654761324702]
We propose a simple yet effective just-fine-tune-twice privacy mechanism to achieve SDP for large Transformer-based language models.
Experiments show that our models achieve strong performance while staying robust to the canary insertion attack.
arXiv Detail & Related papers (2022-04-15T22:36:55Z) - A Hybrid Framework for Sequential Data Prediction with End-to-End
Optimization [0.0]
We investigate nonlinear prediction in an online setting and introduce a hybrid model that effectively mitigates hand-designed features and manual model selection issues.
We employ a recurrent neural network (LSTM) for adaptive feature extraction from sequential data and a gradient boosting machinery (soft GBDT) for effective supervised regression.
We demonstrate the learning behavior of our algorithm on synthetic data and the significant performance improvements over the conventional methods over various real life datasets.
arXiv Detail & Related papers (2022-03-25T17:13:08Z) - Hyperparameter-free Continuous Learning for Domain Classification in
Natural Language Understanding [60.226644697970116]
Domain classification is the fundamental task in natural language understanding (NLU)
Most existing continual learning approaches suffer from low accuracy and performance fluctuation.
We propose a hyper parameter-free continual learning model for text data that can stably produce high performance under various environments.
arXiv Detail & Related papers (2022-01-05T02:46:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.