Knowledge Graph Construction in Power Distribution Networks
- URL: http://arxiv.org/abs/2311.08724v3
- Date: Sat, 27 Jan 2024 07:15:54 GMT
- Title: Knowledge Graph Construction in Power Distribution Networks
- Authors: Xiang Li, Che Wang, Bing Li, Hao Chen, Sizhe Li
- Abstract summary: We propose a method for knowledge graph construction in power distribution networks.
We use entity features, which involve their semantic, phonetic, and syntactic characteristics, in both the knowledge graph of distribution network and the dispatching texts.
An enhanced model based on Convolutional Neural Network, is utilized for effectively matching dispatch text entities with those in the knowledge graph.
- Score: 17.18463559355908
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a method for knowledge graph construction in power
distribution networks. This method leverages entity features, which involve
their semantic, phonetic, and syntactic characteristics, in both the knowledge
graph of distribution network and the dispatching texts. An enhanced model
based on Convolutional Neural Network, is utilized for effectively matching
dispatch text entities with those in the knowledge graph. The effectiveness of
this model is evaluated through experiments in real-world power distribution
dispatch scenarios. The results indicate that, compared with the baselines, the
proposed model excels in linking a variety of entity types, demonstrating high
overall accuracy in power distribution knowledge graph construction task.
Related papers
- Graph Neural Network-Based Entity Extraction and Relationship Reasoning in Complex Knowledge Graphs [1.5998200006932823]
This study proposed a knowledge graph entity extraction and relationship reasoning algorithm based on a graph neural network.
By building an end-to-end joint model, this paper achieves efficient recognition and reasoning of entities and relationships.
arXiv Detail & Related papers (2024-11-19T16:23:49Z) - Leveraging Graph Neural Networks to Forecast Electricity Consumption [3.157383076370605]
This research work offers a novel approach that extends beyond the conventional Generalized Additive Model framework.
We introduce a range of methods for inferring graphs tailored to consumption forecasting, along with a framework for evaluating the developed models.
We conduct experiments on electricity forecasting, in both a synthetic and a real framework considering the French mainland regions.
arXiv Detail & Related papers (2024-08-30T15:54:50Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - CADGE: Context-Aware Dialogue Generation Enhanced with Graph-Structured Knowledge Aggregation [25.56539617837482]
A novel context-aware graph-attention model (Context-aware GAT) is proposed.
It assimilates global features from relevant knowledge graphs through a context-enhanced knowledge aggregation mechanism.
Empirical results demonstrate that our framework outperforms conventional GNN-based language models in terms of performance.
arXiv Detail & Related papers (2023-05-10T16:31:35Z) - Fair Node Representation Learning via Adaptive Data Augmentation [9.492903649862761]
This work theoretically explains the sources of bias in node representations obtained via Graph Neural Networks (GNNs)
Building upon the analysis, fairness-aware data augmentation frameworks are developed to reduce the intrinsic bias.
Our analysis and proposed schemes can be readily employed to enhance the fairness of various GNN-based learning mechanisms.
arXiv Detail & Related papers (2022-01-21T05:49:15Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMN is a novel framework which utilizes node feature information and the higher order local structure of the graph.
It will greatly improve the learning efficiency of the graph neural network and promote a brand-new learning mode establishment.
arXiv Detail & Related papers (2020-07-31T04:18:20Z) - Progressive Graph Convolutional Networks for Semi-Supervised Node
Classification [97.14064057840089]
Graph convolutional networks have been successful in addressing graph-based tasks such as semi-supervised node classification.
We propose a method to automatically build compact and task-specific graph convolutional networks.
arXiv Detail & Related papers (2020-03-27T08:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.