Human-in-the-loop: Towards Label Embeddings for Measuring Classification Difficulty
- URL: http://arxiv.org/abs/2311.08874v2
- Date: Mon, 27 May 2024 09:53:01 GMT
- Title: Human-in-the-loop: Towards Label Embeddings for Measuring Classification Difficulty
- Authors: Katharina Hechinger, Christoph Koller, Xiao Xiang Zhu, Göran Kauermann,
- Abstract summary: In supervised learning, uncertainty can already occur in the first stage of the training process, the annotation phase.
The main idea of this work is to drop the assumption of a ground truth label and instead embed the annotations into a multidimensional space.
The methods developed in this paper readily extend to various situations where multiple annotators independently label instances.
- Score: 14.452983136429967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty in machine learning models is a timely and vast field of research. In supervised learning, uncertainty can already occur in the first stage of the training process, the annotation phase. This scenario is particularly evident when some instances cannot be definitively classified. In other words, there is inevitable ambiguity in the annotation step and hence, not necessarily a "ground truth" associated with each instance. The main idea of this work is to drop the assumption of a ground truth label and instead embed the annotations into a multidimensional space. This embedding is derived from the empirical distribution of annotations in a Bayesian setup, modeled via a Dirichlet-Multinomial framework. We estimate the model parameters and posteriors using a stochastic Expectation Maximization algorithm with Markov Chain Monte Carlo steps. The methods developed in this paper readily extend to various situations where multiple annotators independently label instances. To showcase the generality of the proposed approach, we apply our approach to three benchmark datasets for image classification and Natural Language Inference. Besides the embeddings, we can investigate the resulting correlation matrices, which reflect the semantic similarities of the original classes very well for all three exemplary datasets.
Related papers
- SimPro: A Simple Probabilistic Framework Towards Realistic Long-Tailed Semi-Supervised Learning [49.94607673097326]
We propose a highly adaptable framework, designated as SimPro, which does not rely on any predefined assumptions about the distribution of unlabeled data.
Our framework, grounded in a probabilistic model, innovatively refines the expectation-maximization algorithm.
Our method showcases consistent state-of-the-art performance across diverse benchmarks and data distribution scenarios.
arXiv Detail & Related papers (2024-02-21T03:39:04Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning.
We propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL)
Our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition.
arXiv Detail & Related papers (2024-01-24T09:39:45Z) - Leveraging Ensemble Diversity for Robust Self-Training in the Presence of Sample Selection Bias [5.698050337128548]
Self-training is a well-known approach for semi-supervised learning. It consists of iteratively assigning pseudo-labels to unlabeled data for which the model is confident and treating them as labeled examples.
For neural networks, softmax prediction probabilities are often used as a confidence measure, although they are known to be overconfident, even for wrong predictions.
We propose a novel confidence measure, called $mathcalT$-similarity, built upon the prediction diversity of an ensemble of linear classifiers.
arXiv Detail & Related papers (2023-10-23T11:30:06Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3D semantic scene understanding tasks have achieved great success with the emergence of deep learning, but often require a huge amount of manually annotated training data.
We propose the first weakly-supervised 3D instance segmentation method that only requires categorical semantic labels as supervision.
By generating pseudo instance labels from categorical semantic labels, our designed approach can also assist existing methods for learning 3D instance segmentation at reduced annotation cost.
arXiv Detail & Related papers (2023-08-03T12:30:52Z) - Realistic Evaluation of Transductive Few-Shot Learning [41.06192162435249]
Transductive inference is widely used in few-shot learning.
We study the effect of arbitrary class distributions within the query sets of few-shot tasks at inference.
We evaluate experimentally state-of-the-art transductive methods over 3 widely used data sets.
arXiv Detail & Related papers (2022-04-24T03:35:06Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
We propose a method for jointly inferring labels across a collection of data samples.
By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs.
arXiv Detail & Related papers (2022-02-28T18:09:44Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - Smoothed Embeddings for Certified Few-Shot Learning [63.68667303948808]
We extend randomized smoothing to few-shot learning models that map inputs to normalized embeddings.
Our results are confirmed by experiments on different datasets.
arXiv Detail & Related papers (2022-02-02T18:19:04Z) - Entropy-Based Uncertainty Calibration for Generalized Zero-Shot Learning [49.04790688256481]
The goal of generalized zero-shot learning (GZSL) is to recognise both seen and unseen classes.
Most GZSL methods typically learn to synthesise visual representations from semantic information on the unseen classes.
We propose a novel framework that leverages dual variational autoencoders with a triplet loss to learn discriminative latent features.
arXiv Detail & Related papers (2021-01-09T05:21:27Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.