Self-Training: A Survey
- URL: http://arxiv.org/abs/2202.12040v5
- Date: Mon, 27 May 2024 11:27:47 GMT
- Title: Self-Training: A Survey
- Authors: Massih-Reza Amini, Vasilii Feofanov, Loic Pauletto, Lies Hadjadj, Emilie Devijver, Yury Maximov,
- Abstract summary: Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
- Score: 5.772546394254112
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations. Because this framework is relevant in many applications, they have received a lot of interest in both academia and industry. Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years. These models are designed to find the decision boundary on low density regions without making additional assumptions about the data distribution, and use the unsigned output score of a learned classifier, or its margin, as an indicator of confidence. The working principle of self-training algorithms is to learn a classifier iteratively by assigning pseudo-labels to the set of unlabeled training samples with a margin greater than a certain threshold. The pseudo-labeled examples are then used to enrich the labeled training data and to train a new classifier in conjunction with the labeled training set. In this paper, we present self-training methods for binary and multi-class classification; as well as their variants and two related approaches, namely consistency-based approaches and transductive learning. We examine the impact of significant self-training features on various methods, using different general and image classification benchmarks, and we discuss our ideas for future research in self-training. To the best of our knowledge, this is the first thorough and complete survey on this subject.
Related papers
- Enhancing Hyperspectral Image Prediction with Contrastive Learning in Low-Label Regime [0.810304644344495]
Self-supervised contrastive learning is an effective approach for addressing the challenge of limited labelled data.
We evaluate the method's performance for both the single-label and multi-label classification tasks.
arXiv Detail & Related papers (2024-10-10T10:20:16Z) - Co-training for Low Resource Scientific Natural Language Inference [65.37685198688538]
We propose a novel co-training method that assigns weights based on the training dynamics of the classifiers to the distantly supervised labels.
By assigning importance weights instead of filtering out examples based on an arbitrary threshold on the predicted confidence, we maximize the usage of automatically labeled data.
The proposed method obtains an improvement of 1.5% in Macro F1 over the distant supervision baseline, and substantial improvements over several other strong SSL baselines.
arXiv Detail & Related papers (2024-06-20T18:35:47Z) - Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery [56.172872410834664]
Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning.
We propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL)
Our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition.
arXiv Detail & Related papers (2024-01-24T09:39:45Z) - One-bit Supervision for Image Classification: Problem, Solution, and
Beyond [114.95815360508395]
This paper presents one-bit supervision, a novel setting of learning with fewer labels, for image classification.
We propose a multi-stage training paradigm and incorporate negative label suppression into an off-the-shelf semi-supervised learning algorithm.
In multiple benchmarks, the learning efficiency of the proposed approach surpasses that using full-bit, semi-supervised supervision.
arXiv Detail & Related papers (2023-11-26T07:39:00Z) - Combining Self-labeling with Selective Sampling [2.0305676256390934]
This work combines self-labeling techniques with active learning in a selective sampling scenario.
We show that naive application of self-labeling can harm performance by introducing bias towards selected classes.
The proposed method matches current selective sampling methods or achieves better results.
arXiv Detail & Related papers (2023-01-11T11:58:45Z) - Resolving label uncertainty with implicit posterior models [71.62113762278963]
We propose a method for jointly inferring labels across a collection of data samples.
By implicitly assuming the existence of a generative model for which a differentiable predictor is the posterior, we derive a training objective that allows learning under weak beliefs.
arXiv Detail & Related papers (2022-02-28T18:09:44Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z) - Uncertainty-aware Self-training for Text Classification with Few Labels [54.13279574908808]
We study self-training as one of the earliest semi-supervised learning approaches to reduce the annotation bottleneck.
We propose an approach to improve self-training by incorporating uncertainty estimates of the underlying neural network.
We show our methods leveraging only 20-30 labeled samples per class for each task for training and for validation can perform within 3% of fully supervised pre-trained language models.
arXiv Detail & Related papers (2020-06-27T08:13:58Z) - Statistical and Algorithmic Insights for Semi-supervised Learning with
Self-training [30.866440916522826]
Self-training is a classical approach in semi-supervised learning.
We show that self-training iterations gracefully improve the model accuracy even if they do get stuck in sub-optimal fixed points.
We then establish a connection between self-training based semi-supervision and the more general problem of learning with heterogenous data.
arXiv Detail & Related papers (2020-06-19T08:09:07Z) - Automatically Discovering and Learning New Visual Categories with
Ranking Statistics [145.89790963544314]
We tackle the problem of discovering novel classes in an image collection given labelled examples of other classes.
We learn a general-purpose clustering model and use the latter to identify the new classes in the unlabelled data.
We evaluate our approach on standard classification benchmarks and outperform current methods for novel category discovery by a significant margin.
arXiv Detail & Related papers (2020-02-13T18:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.