Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery
- URL: http://arxiv.org/abs/2401.13325v2
- Date: Thu, 1 Feb 2024 03:38:22 GMT
- Title: Memory Consistency Guided Divide-and-Conquer Learning for Generalized
Category Discovery
- Authors: Yuanpeng Tu, Zhun Zhong, Yuxi Li, Hengshuang Zhao
- Abstract summary: Generalized category discovery (GCD) aims at addressing a more realistic and challenging setting of semi-supervised learning.
We propose a Memory Consistency guided Divide-and-conquer Learning framework (MCDL)
Our method outperforms state-of-the-art models by a large margin on both seen and unseen classes of the generic image recognition.
- Score: 56.172872410834664
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Generalized category discovery (GCD) aims at addressing a more realistic and
challenging setting of semi-supervised learning, where only part of the
category labels are assigned to certain training samples. Previous methods
generally employ naive contrastive learning or unsupervised clustering scheme
for all the samples. Nevertheless, they usually ignore the inherent critical
information within the historical predictions of the model being trained.
Specifically, we empirically reveal that a significant number of salient
unlabeled samples yield consistent historical predictions corresponding to
their ground truth category. From this observation, we propose a Memory
Consistency guided Divide-and-conquer Learning framework (MCDL). In this
framework, we introduce two memory banks to record historical prediction of
unlabeled data, which are exploited to measure the credibility of each sample
in terms of its prediction consistency. With the guidance of credibility, we
can design a divide-and-conquer learning strategy to fully utilize the
discriminative information of unlabeled data while alleviating the negative
influence of noisy labels. Extensive experimental results on multiple
benchmarks demonstrate the generality and superiority of our method, where our
method outperforms state-of-the-art models by a large margin on both seen and
unseen classes of the generic image recognition and challenging semantic shift
settings (i.e.,with +8.4% gain on CUB and +8.1% on Standford Cars).
Related papers
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
We propose a novel preview-based category contrastive learning method for knowledge distillation (PCKD)
It first distills the structural knowledge of both instance-level feature correspondence and the relation between instance features and category centers.
It can explicitly optimize the category representation and explore the distinct correlation between representations of instances and categories.
arXiv Detail & Related papers (2024-10-18T03:31:00Z) - Virtual Category Learning: A Semi-Supervised Learning Method for Dense
Prediction with Extremely Limited Labels [63.16824565919966]
This paper proposes to use confusing samples proactively without label correction.
A Virtual Category (VC) is assigned to each confusing sample in such a way that it can safely contribute to the model optimisation.
Our intriguing findings highlight the usage of VC learning in dense vision tasks.
arXiv Detail & Related papers (2023-12-02T16:23:52Z) - Towards Distribution-Agnostic Generalized Category Discovery [51.52673017664908]
Data imbalance and open-ended distribution are intrinsic characteristics of the real visual world.
We propose a Self-Balanced Co-Advice contrastive framework (BaCon)
BaCon consists of a contrastive-learning branch and a pseudo-labeling branch, working collaboratively to provide interactive supervision to resolve the DA-GCD task.
arXiv Detail & Related papers (2023-10-02T17:39:58Z) - Bridging the Gap: Learning Pace Synchronization for Open-World Semi-Supervised Learning [44.91863420044712]
In open-world semi-supervised learning, a machine learning model is tasked with uncovering novel categories from unlabeled data.
We introduce 1) the adaptive synchronizing marginal loss which imposes class-specific negative margins to alleviate the model bias towards seen classes, and 2) the pseudo-label contrastive clustering which exploits pseudo-labels predicted by the model to group unlabeled data from the same category together.
Our method balances the learning pace between seen and novel classes, achieving a remarkable 3% average accuracy increase on the ImageNet dataset.
arXiv Detail & Related papers (2023-09-21T09:44:39Z) - A Universal Unbiased Method for Classification from Aggregate
Observations [115.20235020903992]
This paper presents a novel universal method of CFAO, which holds an unbiased estimator of the classification risk for arbitrary losses.
Our proposed method not only guarantees the risk consistency due to the unbiased risk estimator but also can be compatible with arbitrary losses.
arXiv Detail & Related papers (2023-06-20T07:22:01Z) - Self-Training: A Survey [5.772546394254112]
Semi-supervised algorithms aim to learn prediction functions from a small set of labeled observations and a large set of unlabeled observations.
Among the existing techniques, self-training methods have undoubtedly attracted greater attention in recent years.
We present self-training methods for binary and multi-class classification; as well as their variants and two related approaches.
arXiv Detail & Related papers (2022-02-24T11:40:44Z) - SemiFed: Semi-supervised Federated Learning with Consistency and
Pseudo-Labeling [14.737638416823772]
Federated learning enables multiple clients, such as mobile phones and organizations, to collaboratively learn a shared model for prediction.
In this work, we focus on a new scenario for cross-silo federated learning, where data samples of each client are partially labeled.
We propose a new framework dubbed SemiFed that unifies two dominant approaches for semi-supervised learning: consistency regularization and pseudo-labeling.
arXiv Detail & Related papers (2021-08-21T01:14:27Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
We build a new framework, named Neighborhood Contrastive Learning, to learn discriminative representations that are important to clustering performance.
We experimentally demonstrate that these two ingredients significantly contribute to clustering performance and lead our model to outperform state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-06-20T17:34:55Z) - Towards Cross-Granularity Few-Shot Learning: Coarse-to-Fine
Pseudo-Labeling with Visual-Semantic Meta-Embedding [13.063136901934865]
Few-shot learning aims at rapidly adapting to novel categories with only a handful of samples at test time.
In this paper, we advance the few-shot classification paradigm towards a more challenging scenario, i.e., cross-granularity few-shot classification.
We approximate the fine-grained data distribution by greedy clustering of each coarse-class into pseudo-fine-classes according to the similarity of image embeddings.
arXiv Detail & Related papers (2020-07-11T03:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.