論文の概要: A Single-Loop Algorithm for Decentralized Bilevel Optimization
- arxiv url: http://arxiv.org/abs/2311.08945v3
- Date: Tue, 23 Apr 2024 08:01:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-24 19:45:27.588574
- Title: A Single-Loop Algorithm for Decentralized Bilevel Optimization
- Title(参考訳): 分散二段階最適化のための単一ループアルゴリズム
- Authors: Youran Dong, Shiqian Ma, Junfeng Yang, Chao Yin,
- Abstract要約: そこで本研究では,分散化された二段階最適化を低レベルに凸した問題で解くための新しい単一ループアルゴリズムを提案する。
提案手法は,反復毎に2つの行列ベクトル乗算のみを用いることで,過勾配を近似する完全単ループ法である。
解析により,提案アルゴリズムは二段階最適化アルゴリズムにおいて最もよく知られた収束率を実現することを示す。
- 参考スコア(独自算出の注目度): 11.67135350286933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bilevel optimization has gained significant attention in recent years due to its broad applications in machine learning. This paper focuses on bilevel optimization in decentralized networks and proposes a novel single-loop algorithm for solving decentralized bilevel optimization with a strongly convex lower-level problem. Our approach is a fully single-loop method that approximates the hypergradient using only two matrix-vector multiplications per iteration. Importantly, our algorithm does not require any gradient heterogeneity assumption, distinguishing it from existing methods for decentralized bilevel optimization and federated bilevel optimization. Our analysis demonstrates that the proposed algorithm achieves the best-known convergence rate for bilevel optimization algorithms. We also present experimental results on hyperparameter optimization problems using both synthetic and MNIST datasets, which demonstrate the efficiency of our proposed algorithm.
- Abstract(参考訳): 近年、バイレベル最適化は機械学習に広く応用されているため、大きな注目を集めている。
本稿では,分散化されたネットワークにおける二段階最適化に焦点をあて,分散化された二段階最適化を低レベルの強い凸問題で解くための新しい単一ループアルゴリズムを提案する。
提案手法は,反復毎に2つの行列ベクトル乗算のみを用いることで,過勾配を近似する完全単ループ法である。
重要な点として,本アルゴリズムは,分散二段階最適化とフェデレート二段階最適化の既存手法とを区別し,勾配不均一性の仮定を必要としない。
解析により,提案アルゴリズムは二段階最適化アルゴリズムにおいて最もよく知られた収束率を実現することを示す。
また,提案アルゴリズムの効率性を示す合成およびMNISTデータセットを用いたハイパーパラメータ最適化に関する実験結果を示す。
関連論文リスト
- Decentralized Multi-Level Compositional Optimization Algorithms with Level-Independent Convergence Rate [26.676582181833584]
分散化されたマルチレベル最適化は、マルチレベル構造と分散通信のために困難である。
マルチレベル構成問題を最適化する2つの新しい分散最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-06-06T00:23:28Z) - A Penalty-Based Method for Communication-Efficient Decentralized Bilevel Programming [14.35928967799696]
本稿では,分散化ネットワーク上での双方向プログラミング問題の解法として,ペナルティ関数に基づく分散化アルゴリズムを提案する。
提案アルゴリズムの重要な特徴は,ペナルティ関数の過度勾配の推定である。
我々の理論的枠組みは、様々な凸条件下での原問題の最適解に漸近的でない収束を保証する。
論文 参考訳(メタデータ) (2022-11-08T08:39:30Z) - Decentralized Stochastic Bilevel Optimization with Improved
per-Iteration Complexity [17.870370505179014]
本稿では,一階オラクル,ヘッセンベクター,ヤコビアンベクターのみを必要とする分散二段階最適化(DSBO)アルゴリズムを提案する。
このアルゴリズムの利点は、全ヘッセン行列とヤコビ行列を推定する必要がなく、それによってイット毎の複雑性が向上するということである。
論文 参考訳(メタデータ) (2022-10-23T20:06:05Z) - On the Convergence of Distributed Stochastic Bilevel Optimization
Algorithms over a Network [55.56019538079826]
バイレベル最適化は、幅広い機械学習モデルに適用されている。
既存のアルゴリズムの多くは、分散データを扱うことができないように、シングルマシンの設定を制限している。
そこで我々は,勾配追跡通信機構と2つの異なる勾配に基づく分散二段階最適化アルゴリズムを開発した。
論文 参考訳(メタデータ) (2022-06-30T05:29:52Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - Bilevel Optimization for Machine Learning: Algorithm Design and
Convergence Analysis [12.680169619392695]
この論文は、2レベル最適化アルゴリズムに対する総合収束率解析を提供する。
問題に基づく定式化では、AIDおよびITDに基づく2レベルアルゴリズムの収束率解析を行う。
そこで我々は,ゆるやかな仮定で形状収束解析を行う加速バイレベルアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-07-31T22:05:47Z) - Enhanced Bilevel Optimization via Bregman Distance [104.96004056928474]
本稿では,Bregman Bregman関数に基づく二段階最適化手法を提案する。
また,分散還元法によるSBiO-BreD法(ASBiO-BreD)の高速化版も提案する。
論文 参考訳(メタデータ) (2021-07-26T16:18:43Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex
Decentralized Optimization Over Time-Varying Networks [79.16773494166644]
通信ネットワークのノード間を分散的に保存するスムーズで強い凸関数の和を最小化するタスクについて検討する。
我々は、これらの下位境界を達成するための2つの最適アルゴリズムを設計する。
我々は,既存の最先端手法と実験的な比較を行うことにより,これらのアルゴリズムの理論的効率を裏付ける。
論文 参考訳(メタデータ) (2021-06-08T15:54:44Z) - Bilevel Optimization: Convergence Analysis and Enhanced Design [63.64636047748605]
バイレベル最適化は多くの機械学習問題に対するツールである。
Stoc-BiO という新しい確率効率勾配推定器を提案する。
論文 参考訳(メタデータ) (2020-10-15T18:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。