Unsupervised approaches based on optimal transport and convex analysis
for inverse problems in imaging
- URL: http://arxiv.org/abs/2311.08972v2
- Date: Wed, 29 Nov 2023 09:57:06 GMT
- Title: Unsupervised approaches based on optimal transport and convex analysis
for inverse problems in imaging
- Authors: Marcello Carioni, Subhadip Mukherjee, Hong Ye Tan, Junqi Tang
- Abstract summary: We review theoretically principled unsupervised learning schemes for solving imaging inverse problems.
We focus on methods rooted in optimal transport and convex analysis.
We give an overview of a recent line of works on provably convergent learned optimization algorithms.
- Score: 6.202226277935329
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised deep learning approaches have recently become one of the crucial
research areas in imaging owing to their ability to learn expressive and
powerful reconstruction operators even when paired high-quality training data
is scarcely available. In this chapter, we review theoretically principled
unsupervised learning schemes for solving imaging inverse problems, with a
particular focus on methods rooted in optimal transport and convex analysis. We
begin by reviewing the optimal transport-based unsupervised approaches such as
the cycle-consistency-based models and learned adversarial regularization
methods, which have clear probabilistic interpretations. Subsequently, we give
an overview of a recent line of works on provably convergent learned
optimization algorithms applied to accelerate the solution of imaging inverse
problems, alongside their dedicated unsupervised training schemes. We also
survey a number of provably convergent plug-and-play algorithms (based on
gradient-step deep denoisers), which are among the most important and widely
applied unsupervised approaches for imaging problems. At the end of this
survey, we provide an overview of a few related unsupervised learning
frameworks that complement our focused schemes. Together with a detailed
survey, we provide an overview of the key mathematical results that underlie
the methods reviewed in the chapter to keep our discussion self-contained.
Related papers
- On Discriminative Probabilistic Modeling for Self-Supervised Representation Learning [85.75164588939185]
We study the discriminative probabilistic modeling problem on a continuous domain for (multimodal) self-supervised representation learning.
We conduct generalization error analysis to reveal the limitation of current InfoNCE-based contrastive loss for self-supervised representation learning.
arXiv Detail & Related papers (2024-10-11T18:02:46Z) - A Guide to Stochastic Optimisation for Large-Scale Inverse Problems [4.926711494319977]
optimisation algorithms are the de facto standard for machine learning with large amounts of data.
We provide a comprehensive account of the state-of-the-art in optimisation from the viewpoint of inverse problems.
We focus on the challenges for optimisation that are unique and are not commonly encountered in machine learning.
arXiv Detail & Related papers (2024-06-10T15:02:30Z) - Unsupervised Training of Convex Regularizers using Maximum Likelihood Estimation [12.625383613718636]
We propose an unsupervised approach using maximum marginal likelihood estimation to train a convex neural network-based image regularization term directly on noisy measurements.
Experiments demonstrate that the proposed method produces priors that are near competitive when compared to the analogous supervised training method for various image corruption operators.
arXiv Detail & Related papers (2024-04-08T12:27:00Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
We introduce a novel theoretical framework for analyzing the effectiveness of DeepMatching Networks and Reinforcement Learning methods.
Our main contribution holds for a broad class of problems including Max-and Min-Cut, Max-$k$-Bipartite-Bi, Maximum-Weight-Bipartite-Bi, and Traveling Salesman Problem.
As a byproduct of our analysis we introduce a novel regularization process over vanilla descent and provide theoretical and experimental evidence that it helps address vanishing-gradient issues and escape bad stationary points.
arXiv Detail & Related papers (2023-10-08T23:39:38Z) - Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning [83.41487567765871]
Skipper is a model-based reinforcement learning framework.
It automatically generalizes the task given into smaller, more manageable subtasks.
It enables sparse decision-making and focused abstractions on the relevant parts of the environment.
arXiv Detail & Related papers (2023-09-30T02:25:18Z) - Unleashing the Power of Self-Supervised Image Denoising: A Comprehensive Review [7.387921606240273]
The advent of deep learning has brought a revolutionary transformation to image denoising techniques.
The persistent challenge of acquiring noise-clean pairs for supervised methods in real-world scenarios remains formidable.
This paper focuses on self-supervised image denoising methods that offer effective solutions.
arXiv Detail & Related papers (2023-08-01T03:00:36Z) - Understanding A Class of Decentralized and Federated Optimization
Algorithms: A Multi-Rate Feedback Control Perspective [41.05789078207364]
We provide a fresh perspective to understand, analyze, and design distributed optimization algorithms.
We show that a wide class of distributed algorithms, including popular decentralized/federated schemes, can be viewed as discretizing a certain continuous-time feedback control system.
arXiv Detail & Related papers (2022-04-27T01:53:57Z) - Adversarial Robustness with Semi-Infinite Constrained Learning [177.42714838799924]
Deep learning to inputs perturbations has raised serious questions about its use in safety-critical domains.
We propose a hybrid Langevin Monte Carlo training approach to mitigate this issue.
We show that our approach can mitigate the trade-off between state-of-the-art performance and robust robustness.
arXiv Detail & Related papers (2021-10-29T13:30:42Z) - Unsupervised Learning for Robust Fitting:A Reinforcement Learning
Approach [25.851792661168698]
We introduce a novel framework that learns to solve robust model fitting.
Unlike other methods, our work is agnostic to the underlying input features.
We empirically show that our method outperforms existing learning approaches.
arXiv Detail & Related papers (2021-03-05T07:14:00Z) - Deep Learning Techniques for Inverse Problems in Imaging [102.30524824234264]
Recent work in machine learning shows that deep neural networks can be used to solve a wide variety of inverse problems.
We present a taxonomy that can be used to categorize different problems and reconstruction methods.
arXiv Detail & Related papers (2020-05-12T18:35:55Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.