論文の概要: Leveraging AI for Natural Disaster Management : Takeaways From The
Moroccan Earthquake
- arxiv url: http://arxiv.org/abs/2311.08999v1
- Date: Wed, 15 Nov 2023 14:38:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 15:45:33.654567
- Title: Leveraging AI for Natural Disaster Management : Takeaways From The
Moroccan Earthquake
- Title(参考訳): 自然災害管理のためのAIの活用 : モロッコ地震の教訓
- Authors: Morocco Solidarity Hackathon (Organizers, Speakers, Mentors and
Participant teams)
- Abstract要約: 2023年にモロッコのアル・ハウズで発生したマグニチュード6.8の地震は、世界的な災害管理戦略に批判的な反映をもたらした。
本稿は, 優勝プロジェクトの総合的な文献レビュー, (ii) 優勝プロジェクトの概観, (iii) 重要な洞察と課題, (iv) さらなる行動のためのコミュニティコールを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The devastating 6.8-magnitude earthquake in Al Haouz, Morocco in 2023
prompted critical reflections on global disaster management strategies,
resulting in a post-disaster hackathon, using artificial intelligence (AI) to
improve disaster preparedness, response, and recovery. This paper provides (i)
a comprehensive literature review, (ii) an overview of winning projects, (iii)
key insights and challenges, namely real-time open-source data, data scarcity,
and interdisciplinary collaboration barriers, and (iv) a community-call for
further action.
- Abstract(参考訳): 2023年、モロッコのアル・ハウズで発生したマグニチュード6.8の地震は、世界的な災害管理戦略に重大な反省を呼び起こし、人工知能(AI)を用いた災害対策、対応、復旧のためのハッカソンを引き起こした。
この論文は
(i)総合的な文献レビュー
(ii)勝利プロジェクトの概観
(iii)オープンソースのリアルタイムデータ、データ不足、学際的コラボレーション障壁といった重要な洞察と課題
(iv)さらなる行動を求めるコミュニティコール。
関連論文リスト
- CrisisSense-LLM: Instruction Fine-Tuned Large Language Model for Multi-label Social Media Text Classification in Disaster Informatics [49.2719253711215]
本研究では,事前学習型大規模言語モデル(LLM)の強化による災害テキスト分類への新たなアプローチを提案する。
本手法では,災害関連ツイートから包括的インストラクションデータセットを作成し,それをオープンソース LLM の微調整に用いる。
この微調整モデルでは,災害関連情報の種類,情報化,人的援助の関与など,複数の側面を同時に分類することができる。
論文 参考訳(メタデータ) (2024-06-16T23:01:10Z) - On Catastrophic Inheritance of Large Foundation Models [51.41727422011327]
大ファンデーションモデル(LFM)は素晴らしいパフォーマンスを誇示している。しかし、彼らの神話的および解釈されていないポテンシャルについて大きな懸念が持ち上がっている。
我々は, LFMに深く根ざした「破滅的継承」という, 無視された問題を特定することを提案する。
この問題の背景にある課題を議論し、事前学習と下流適応の両方からLFMの破滅的な継承を理解するためのフレームワークであるUIMを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:21:55Z) - Near-real-time Earthquake-induced Fatality Estimation using Crowdsourced
Data and Large-Language Models [5.031939163610801]
本研究では,地球規模の地震による損失予測の時系列と精度を大幅に改善するエンドツーエンドフレームワークを提案する。
我々のフレームワークは,大規模言語モデル上に構築された階層的カジュアルさ抽出モデルと,迅速な設計,少数ショット学習を統合している。
我々は2022年と2022年の一連の世界地震でリアルタイムにこのフレームワークをテストし、我々のフレームワークが2021年までに手動の手法に匹敵する速度と精度を達成し、カジュアルなデータ検索を合理化していることを示す。
論文 参考訳(メタデータ) (2023-12-04T17:09:58Z) - CrisisMatch: Semi-Supervised Few-Shot Learning for Fine-Grained Disaster
Tweet Classification [51.58605842457186]
半教師付き, 少数ショットの学習環境下で, 微粒な災害ツイート分類モデルを提案する。
私たちのモデルであるCrisisMatchは、ラベルなしデータと大量のラベルなしデータを用いて、ツイートを関心の細かいクラスに効果的に分類する。
論文 参考訳(メタデータ) (2023-10-23T07:01:09Z) - The Robust Semantic Segmentation UNCV2023 Challenge Results [99.97867942388486]
本稿では,ICCV 2023で実施されたMUAD不確実性定量化問題に対処するために用いられる勝利解について概説する。
この課題は、都市環境におけるセマンティックセグメンテーションを中心に、特に自然の敵対的なシナリオに焦点を当てた。
本報告では, 最先端の不確実性定量化手法からインスピレーションを得た19件の論文を提示する。
論文 参考訳(メタデータ) (2023-09-27T08:20:03Z) - Sarcasm Detection in a Disaster Context [103.93691731605163]
HurricaneSARCは,意図した皮肉に注釈を付けた15,000ツイートのデータセットである。
私たちの最高のモデルは、データセットで最大0.70F1を得ることができます。
論文 参考訳(メタデータ) (2023-08-16T05:58:12Z) - Detecting Damage Building Using Real-time Crowdsourced Images and
Transfer Learning [53.26496452886417]
本稿では,Twitterなどのソーシャルメディアプラットフォームから地震後の建物画像を自動的に抽出する手法を提案する。
トランスファーラーニングと6500枚の手動ラベル付き画像を用いて,現場に損傷のある建物を画像として認識する深層学習モデルを訓練した。
訓練されたモデルは、異なる場所で新たに取得した地震の画像でテストし、トルコのM7.0地震の後、Twitterのフィードでほぼリアルタイムで実行された。
論文 参考訳(メタデータ) (2021-10-12T06:31:54Z) - OKSP: A Novel Deep Learning Automatic Event Detection Pipeline for
Seismic Monitoringin Costa Rica [0.0938460348620674]
コスタリカにおける地震モニタリングのための新しい自動地震検出パイプラインであるOKSPを紹介する。
OKSPは100%抜本的であり、精度は82%であり、F1スコアは0.90である。
この試みは、深層学習手法を用いてコスタリカの地震を自動的に検出する最初の試みであり、近い将来、地震監視ルーチンがAIアルゴリズムによって完全に実行されることを実証する。
論文 参考訳(メタデータ) (2021-09-06T20:24:49Z) - Text Analytics for Resilience-Enabled Extreme Events Reconnaissance [7.54569938687922]
本研究は,(1)太平洋地震工学研究センター(PEER)サーバがホストする自動データ(ニュース・ソーシャルメディア)収集,(2)偵察報告の自動生成,(3)復旧時間などの災害後の情報を抽出するためのソーシャルメディアの利用に焦点を当てた。
論文 参考訳(メタデータ) (2020-11-26T01:43:29Z) - Social Media Information Sharing for Natural Disaster Response [0.0]
ソーシャルメディアは災害関連情報を投稿するための重要なチャンネルとなり、政府や救援機関が災害管理を改善するためのリアルタイムデータを提供している。
本研究の目的は,災害対応に対する公衆の態度や災害時の防災物資に対する公衆の要求など,ソーシャルメディアデータのマイニング・分析による防災効率の向上である。
論文 参考訳(メタデータ) (2020-05-08T21:11:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。