Incremental Object-Based Novelty Detection with Feedback Loop
- URL: http://arxiv.org/abs/2311.09004v2
- Date: Fri, 2 Aug 2024 13:27:09 GMT
- Title: Incremental Object-Based Novelty Detection with Feedback Loop
- Authors: Simone Caldarella, Elisa Ricci, Rahaf Aljundi,
- Abstract summary: Object-based Novelty Detection (ND) aims to identify unknown objects that do not belong to classes seen during training.
Traditional approaches to ND focus on one time offline post processing of the pretrained object detection output.
We propose a novel framework for object-based ND, assuming that human feedback can be requested on the predicted output.
- Score: 18.453867533201308
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object-based Novelty Detection (ND) aims to identify unknown objects that do not belong to classes seen during training by an object detection model. The task is particularly crucial in real-world applications, as it allows to avoid potentially harmful behaviours, e.g. as in the case of object detection models adopted in a self-driving car or in an autonomous robot. Traditional approaches to ND focus on one time offline post processing of the pretrained object detection output, leaving no possibility to improve the model robustness after training and discarding the abundant amount of out-of-distribution data encountered during deployment. In this work, we propose a novel framework for object-based ND, assuming that human feedback can be requested on the predicted output and later incorporated to refine the ND model without negatively affecting the main object detection performance. This refinement operation is repeated whenever new feedback is available. To tackle this new formulation of the problem for object detection, we propose a lightweight ND module attached on top of a pre-trained object detection model, which is incrementally updated through a feedback loop. We also propose a new benchmark to evaluate methods on this new setting and test extensively our ND approach against baselines, showing increased robustness and a successful incorporation of the received feedback.
Related papers
- On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.7236795813629]
We propose a novel detection algorithm for detecting unknown objects in image data.
It exploits supervised dimensionality reduction techniques to mitigate the effects of the curse of dimensionality on the features extracted by the model.
It utilizes high-resolution feature maps to identify potential unknown objects in an unsupervised fashion.
arXiv Detail & Related papers (2024-11-07T10:15:25Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot object detection (FSOD) methods have emerged as a solution to the limitations of classic object detection approaches.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during the FSOD training stage.
Our improved hierarchical sampling strategy for the region proposal network (RPN) also boosts the perception of the object detection model for large objects.
arXiv Detail & Related papers (2023-08-15T02:35:59Z) - Identification of Novel Classes for Improving Few-Shot Object Detection [12.013345715187285]
Few-shot object detection (FSOD) methods offer a remedy by realizing robust object detection using only a few training samples per class.
We develop a semi-supervised algorithm to detect and then utilize unlabeled novel objects as positive samples during training to improve FSOD performance.
Our experimental results indicate that our method is effective and outperforms the existing state-of-the-art (SOTA) FSOD methods.
arXiv Detail & Related papers (2023-03-18T14:12:52Z) - Long Range Object-Level Monocular Depth Estimation for UAVs [0.0]
We propose several novel extensions to state-of-the-art methods for monocular object detection from images at long range.
Firstly, we propose Sigmoid and ReLU-like encodings when modeling depth estimation as a regression task.
Secondly, we frame the depth estimation as a classification problem and introduce a Soft-Argmax function in the calculation of the training loss.
arXiv Detail & Related papers (2023-02-17T15:26:04Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
We propose the Incremental-DETR that does incremental few-shot object detection via fine-tuning and self-supervised learning on the DETR object detector.
To alleviate severe over-fitting with few novel class data, we first fine-tune the class-specific components of DETR with self-supervision.
We further introduce a incremental few-shot fine-tuning strategy with knowledge distillation on the class-specific components of DETR to encourage the network in detecting novel classes without catastrophic forgetting.
arXiv Detail & Related papers (2022-05-09T05:08:08Z) - Shape-Aware Monocular 3D Object Detection [15.693199934120077]
A single-stage monocular 3D object detection model is proposed.
The detection largely avoids interference from irrelevant regions surrounding the target objects.
A novel evaluation metric, namely average depth similarity (ADS) is proposed for the monocular 3D object detection models.
arXiv Detail & Related papers (2022-04-19T07:43:56Z) - Online Multi-Object Tracking with Unsupervised Re-Identification
Learning and Occlusion Estimation [80.38553821508162]
Occlusion between different objects is a typical challenge in Multi-Object Tracking (MOT)
In this paper, we focus on online multi-object tracking and design two novel modules to handle these problems.
The proposed unsupervised re-identification learning module does not require any (pseudo) identity information nor suffer from the scalability issue.
Our study shows that, when applied to state-of-the-art MOT methods, the proposed unsupervised re-identification learning is comparable to supervised re-identification learning.
arXiv Detail & Related papers (2022-01-04T18:59:58Z) - Progressive Self-Guided Loss for Salient Object Detection [102.35488902433896]
We present a progressive self-guided loss function to facilitate deep learning-based salient object detection in images.
Our framework takes advantage of adaptively aggregated multi-scale features to locate and detect salient objects effectively.
arXiv Detail & Related papers (2021-01-07T07:33:38Z) - Detecting Invisible People [58.49425715635312]
We re-purpose tracking benchmarks and propose new metrics for the task of detecting invisible objects.
We demonstrate that current detection and tracking systems perform dramatically worse on this task.
Second, we build dynamic models that explicitly reason in 3D, making use of observations produced by state-of-the-art monocular depth estimation networks.
arXiv Detail & Related papers (2020-12-15T16:54:45Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.