Enhancing Novel Object Detection via Cooperative Foundational Models
- URL: http://arxiv.org/abs/2311.12068v4
- Date: Wed, 15 Jan 2025 19:28:27 GMT
- Title: Enhancing Novel Object Detection via Cooperative Foundational Models
- Authors: Rohit Bharadwaj, Muzammal Naseer, Salman Khan, Fahad Shahbaz Khan,
- Abstract summary: We present a novel approach to transform existing closed-set detectors into open-set detectors.
We surpass the current state-of-the-art by a margin of 7.2 $ textAP_50 $ for novel classes.
- Score: 68.93124785575739
- License:
- Abstract: In this work, we address the challenging and emergent problem of novel object detection (NOD), focusing on the accurate detection of both known and novel object categories during inference. Traditional object detection algorithms are inherently closed-set, limiting their capability to handle NOD. We present a novel approach to transform existing closed-set detectors into open-set detectors. This transformation is achieved by leveraging the complementary strengths of pre-trained foundational models, specifically CLIP and SAM, through our cooperative mechanism. Furthermore, by integrating this mechanism with state-of-the-art open-set detectors such as GDINO, we establish new benchmarks in object detection performance. Our method achieves 17.42 mAP in novel object detection and 42.08 mAP for known objects on the challenging LVIS dataset. Adapting our approach to the COCO OVD split, we surpass the current state-of-the-art by a margin of 7.2 $ \text{AP}_{50} $ for novel classes. Our code is available at https://rohit901.github.io/coop-foundation-models/ .
Related papers
- On the Inherent Robustness of One-Stage Object Detection against Out-of-Distribution Data [6.267143531261792]
We propose a novel detection algorithm for detecting unknown objects in image data.
It exploits supervised dimensionality reduction techniques to mitigate the effects of the curse of dimensionality on the features extracted by the model.
It utilizes high-resolution feature maps to identify potential unknown objects in an unsupervised fashion.
arXiv Detail & Related papers (2024-11-07T10:15:25Z) - Exploiting Unlabeled Data with Multiple Expert Teachers for Open Vocabulary Aerial Object Detection and Its Orientation Adaptation [58.37525311718006]
We put forth a novel formulation of the aerial object detection problem, namely open-vocabulary aerial object detection (OVAD)
We propose CastDet, a CLIP-activated student-teacher detection framework that serves as the first OVAD detector specifically designed for the challenging aerial scenario.
Our framework integrates a robust localization teacher along with several box selection strategies to generate high-quality proposals for novel objects.
arXiv Detail & Related papers (2024-11-04T12:59:13Z) - Cross-Domain Few-Shot Object Detection via Enhanced Open-Set Object Detector [72.05791402494727]
This paper studies the challenging cross-domain few-shot object detection (CD-FSOD)
It aims to develop an accurate object detector for novel domains with minimal labeled examples.
arXiv Detail & Related papers (2024-02-05T15:25:32Z) - Open World Object Detection in the Era of Foundation Models [53.683963161370585]
We introduce a new benchmark that includes five real-world application-driven datasets.
We introduce a novel method, Foundation Object detection Model for the Open world, or FOMO, which identifies unknown objects based on their shared attributes with the base known objects.
arXiv Detail & Related papers (2023-12-10T03:56:06Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - CAT: LoCalization and IdentificAtion Cascade Detection Transformer for
Open-World Object Detection [17.766859354014663]
Open-world object detection requires a model trained from data on known objects to detect both known and unknown objects.
We propose a novel solution called CAT: LoCalization and IdentificAtion Cascade Detection Transformer.
We show that our model outperforms the state-of-the-art in terms of all metrics in the task of OWOD, incremental object detection (IOD) and open-set detection.
arXiv Detail & Related papers (2023-01-05T09:11:16Z) - Towards Open-Set Object Detection and Discovery [38.81806249664884]
We present a new task, namely Open-Set Object Detection and Discovery (OSODD)
We propose a two-stage method that first uses an open-set object detector to predict both known and unknown objects.
Then, we study the representation of predicted objects in an unsupervised manner and discover new categories from the set of unknown objects.
arXiv Detail & Related papers (2022-04-12T08:07:01Z) - Multi-View Correlation Distillation for Incremental Object Detection [12.536640582318949]
We propose a novel textbfMulti-textbfView textbfCorrelation textbfDistillation (MVCD) based incremental object detection method.
arXiv Detail & Related papers (2021-07-05T04:36:33Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.