On the Foundation of Distributionally Robust Reinforcement Learning
- URL: http://arxiv.org/abs/2311.09018v3
- Date: Fri, 19 Jan 2024 19:24:26 GMT
- Title: On the Foundation of Distributionally Robust Reinforcement Learning
- Authors: Shengbo Wang, Nian Si, Jose Blanchet, Zhengyuan Zhou
- Abstract summary: We contribute to the theoretical foundation of distributionally robust reinforcement learning (DRRL)
This framework obliges the decision maker to choose an optimal policy under the worst-case distributional shift orchestrated by an adversary.
Within this DRMDP framework, we investigate conditions for the existence or absence of the dynamic programming principle (DPP)
- Score: 19.621038847810198
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motivated by the need for a robust policy in the face of environment shifts
between training and the deployment, we contribute to the theoretical
foundation of distributionally robust reinforcement learning (DRRL). This is
accomplished through a comprehensive modeling framework centered around
distributionally robust Markov decision processes (DRMDPs). This framework
obliges the decision maker to choose an optimal policy under the worst-case
distributional shift orchestrated by an adversary. By unifying and extending
existing formulations, we rigorously construct DRMDPs that embraces various
modeling attributes for both the decision maker and the adversary. These
attributes include adaptability granularity, exploring history-dependent,
Markov, and Markov time-homogeneous decision maker and adversary dynamics.
Additionally, we delve into the flexibility of shifts induced by the adversary,
examining SA and S-rectangularity. Within this DRMDP framework, we investigate
conditions for the existence or absence of the dynamic programming principle
(DPP). From an algorithmic standpoint, the existence of DPP holds significant
implications, as the vast majority of existing data and computationally
efficiency RL algorithms are reliant on the DPP. To study its existence, we
comprehensively examine combinations of controller and adversary attributes,
providing streamlined proofs grounded in a unified methodology. We also offer
counterexamples for settings in which a DPP with full generality is absent.
Related papers
- Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - The Risk of Federated Learning to Skew Fine-Tuning Features and
Underperform Out-of-Distribution Robustness [50.52507648690234]
Federated learning has the risk of skewing fine-tuning features and compromising the robustness of the model.
We introduce three robustness indicators and conduct experiments across diverse robust datasets.
Our approach markedly enhances the robustness across diverse scenarios, encompassing various parameter-efficient fine-tuning methods.
arXiv Detail & Related papers (2024-01-25T09:18:51Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
Three major challenges in reinforcement learning are the complex dynamical systems with large state spaces, the costly data acquisition processes, and the deviation of real-world dynamics from the training environment deployment.
We study distributionally robust Markov decision processes with continuous state spaces under the widely used Kullback-Leibler, chi-square, and total variation uncertainty sets.
We propose a model-based approach that utilizes Gaussian Processes and the maximum variance reduction algorithm to efficiently learn multi-output nominal transition dynamics.
arXiv Detail & Related papers (2023-09-05T13:42:11Z) - Decision-Dependent Distributionally Robust Markov Decision Process
Method in Dynamic Epidemic Control [4.644416582073023]
The Susceptible-Exposed-Infectious-Recovered (SEIR) model is widely used to represent the spread of infectious diseases.
We present a Distributionally Robust Markov Decision Process (DRMDP) approach for addressing the dynamic epidemic control problem.
arXiv Detail & Related papers (2023-06-24T20:19:04Z) - Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity [39.886149789339335]
offline reinforcement learning aims to learn to perform decision making from history data without active exploration.
Due to uncertainties and variabilities of the environment, it is critical to learn a robust policy that performs well even when the deployed environment deviates from the nominal one used to collect the history dataset.
We consider a distributionally robust formulation of offline RL, focusing on robust Markov decision processes with an uncertainty set specified by the Kullback-Leibler divergence in both finite-horizon and infinite-horizon settings.
arXiv Detail & Related papers (2022-08-11T11:55:31Z) - Reinforcement Learning with a Terminator [80.34572413850186]
We learn the parameters of the TerMDP and leverage the structure of the estimation problem to provide state-wise confidence bounds.
We use these to construct a provably-efficient algorithm, which accounts for termination, and bound its regret.
arXiv Detail & Related papers (2022-05-30T18:40:28Z) - Robust Entropy-regularized Markov Decision Processes [23.719568076996662]
We study a robust version of the ER-MDP model, where the optimal policies are required to be robust.
We show that essential properties that hold for the non-robust ER-MDP and robust unregularized MDP models also hold in our settings.
We show how our framework and results can be integrated into different algorithmic schemes including value or (modified) policy.
arXiv Detail & Related papers (2021-12-31T09:50:46Z) - Sample Complexity of Robust Reinforcement Learning with a Generative
Model [0.0]
We propose a model-based reinforcement learning (RL) algorithm for learning an $epsilon$-optimal robust policy.
We consider three different forms of uncertainty sets, characterized by the total variation distance, chi-square divergence, and KL divergence.
In addition to the sample complexity results, we also present a formal analytical argument on the benefit of using robust policies.
arXiv Detail & Related papers (2021-12-02T18:55:51Z) - Robust Constrained-MDPs: Soft-Constrained Robust Policy Optimization
under Model Uncertainty [9.246374019271935]
We propose to merge the theory of constrained Markov decision process (CMDP) with the theory of robust Markov decision process (RMDP)
This formulation allows us to design RL algorithms that are robust in performance, and provides constraint satisfaction guarantees.
We first propose the general problem formulation under the concept of RCMDP, and then propose a Lagrangian formulation of the optimal problem, leading to a robust-constrained policy gradient RL algorithm.
arXiv Detail & Related papers (2020-10-10T01:53:37Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.