GRASP: A novel benchmark for evaluating language GRounding And Situated Physics understanding in multimodal language models
- URL: http://arxiv.org/abs/2311.09048v3
- Date: Thu, 6 Jun 2024 09:35:53 GMT
- Title: GRASP: A novel benchmark for evaluating language GRounding And Situated Physics understanding in multimodal language models
- Authors: Serwan Jassim, Mario Holubar, Annika Richter, Cornelius Wolff, Xenia Ohmer, Elia Bruni,
- Abstract summary: This paper presents GRASP, a novel benchmark to evaluate the language grounding and physical understanding capabilities of video-based multimodal large language models (LLMs)
We use it to evaluate several state-of-the-art multimodal LLMs.
Our evaluation reveals significant shortcomings in the language grounding and intuitive physics capabilities of these models.
- Score: 4.354672867211922
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents GRASP, a novel benchmark to evaluate the language grounding and physical understanding capabilities of video-based multimodal large language models (LLMs). This evaluation is accomplished via a two-tier approach leveraging Unity simulations. The first level tests for language grounding by assessing a model's ability to relate simple textual descriptions with visual information. The second level evaluates the model's understanding of "Intuitive Physics" principles, such as object permanence and continuity. In addition to releasing the benchmark, we use it to evaluate several state-of-the-art multimodal LLMs. Our evaluation reveals significant shortcomings in the language grounding and intuitive physics capabilities of these models. Although they exhibit at least some grounding capabilities, particularly for colors and shapes, these capabilities depend heavily on the prompting strategy. At the same time, all models perform below or at the chance level of 50% in the Intuitive Physics tests, while human subjects are on average 80% correct. These identified limitations underline the importance of using benchmarks like GRASP to monitor the progress of future models in developing these competencies.
Related papers
- Pixels to Principles: Probing Intuitive Physics Understanding in Multimodal Language Models [5.134872455507186]
This paper presents a systematic evaluation of state-of-the-art multimodal large language models (MLLMs) on intuitive physics tasks.<n>We assess the open-source models InternVL 2.5, Qwen 2.5 VL, LLaVA-OneVision, and the proprietary Gemini 2.0 Flash Thinking.<n>We find that even the latest models struggle to reliably distinguish physically plausible from implausible scenarios.
arXiv Detail & Related papers (2025-07-22T13:24:42Z) - Can Your Model Separate Yolks with a Water Bottle? Benchmarking Physical Commonsense Understanding in Video Generation Models [14.187604603759784]
We present PhysVidBench, a benchmark designed to evaluate the physical reasoning capabilities of text-to-video systems.<n>For each prompt, we generate videos using diverse state-of-the-art models and adopt a three-stage evaluation pipeline.<n> PhysVidBench provides a structured, interpretable framework for assessing physical commonsense in generative video models.
arXiv Detail & Related papers (2025-07-21T17:30:46Z) - Do Vision-Language Models Have Internal World Models? Towards an Atomic Evaluation [54.3628937181904]
Internal world models (WMs) enable agents to understand the world's state and predict transitions.<n>Recent large Vision-Language Models (VLMs), such as OpenAI o3, GPT-4o and Gemini, exhibit potential as general-purpose WMs.
arXiv Detail & Related papers (2025-06-27T03:24:29Z) - IntPhys 2: Benchmarking Intuitive Physics Understanding In Complex Synthetic Environments [26.02187269408895]
IntPhys 2 is a video benchmark designed to evaluate the intuitive physics understanding of deep learning models.<n>IntPhys 2 focuses on four core principles related to macroscopic objects: Permanence, Immutability, Spatio-Temporal Continuity, and Solidity.
arXiv Detail & Related papers (2025-06-11T15:21:16Z) - Towards World Simulator: Crafting Physical Commonsense-Based Benchmark for Video Generation [51.750634349748736]
Text-to-video (T2V) models have made significant strides in visualizing complex prompts.
However, the capacity of these models to accurately represent intuitive physics remains largely unexplored.
We introduce PhyGenBench to evaluate physical commonsense correctness in T2V generation.
arXiv Detail & Related papers (2024-10-07T17:56:04Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Can Large Language Models Understand Context? [17.196362853457412]
This paper introduces a context understanding benchmark by adapting existing datasets to suit the evaluation of generative models.
Experimental results indicate that pre-trained dense models struggle with understanding more nuanced contextual features when compared to state-of-the-art fine-tuned models.
As LLM compression holds growing significance in both research and real-world applications, we assess the context understanding of quantized models under in-context-learning settings.
arXiv Detail & Related papers (2024-02-01T18:55:29Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
We present L2CEval, a systematic evaluation of the language-to-code generation capabilities of large language models (LLMs)
We analyze the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods.
In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs.
arXiv Detail & Related papers (2023-09-29T17:57:00Z) - Disco-Bench: A Discourse-Aware Evaluation Benchmark for Language
Modelling [70.23876429382969]
We propose a benchmark that can evaluate intra-sentence discourse properties across a diverse set of NLP tasks.
Disco-Bench consists of 9 document-level testsets in the literature domain, which contain rich discourse phenomena.
For linguistic analysis, we also design a diagnostic test suite that can examine whether the target models learn discourse knowledge.
arXiv Detail & Related papers (2023-07-16T15:18:25Z) - Do Vision-and-Language Transformers Learn Grounded Predicate-Noun
Dependencies? [0.06299766708197882]
We create a new task targeted at evaluating understanding of predicate-noun dependencies in a controlled setup.
We evaluate a range of state-of-the-art models and find that their performance on the task varies considerably.
This study highlights that targeted and controlled evaluations are a crucial step for a precise and rigorous test of the multimodal knowledge of vision-and-language models.
arXiv Detail & Related papers (2022-10-21T16:07:00Z) - ELEVATER: A Benchmark and Toolkit for Evaluating Language-Augmented
Visual Models [102.63817106363597]
We build ELEVATER, the first benchmark to compare and evaluate pre-trained language-augmented visual models.
It consists of 20 image classification datasets and 35 object detection datasets, each of which is augmented with external knowledge.
We will release our toolkit and evaluation platforms for the research community.
arXiv Detail & Related papers (2022-04-19T10:23:42Z) - IGLUE: A Benchmark for Transfer Learning across Modalities, Tasks, and
Languages [87.5457337866383]
We introduce the Image-Grounded Language Understanding Evaluation benchmark.
IGLUE brings together visual question answering, cross-modal retrieval, grounded reasoning, and grounded entailment tasks across 20 diverse languages.
We find that translate-test transfer is superior to zero-shot transfer and that few-shot learning is hard to harness for many tasks.
arXiv Detail & Related papers (2022-01-27T18:53:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.