論文の概要: R-Spin: Efficient Speaker and Noise-invariant Representation Learning with Acoustic Pieces
- arxiv url: http://arxiv.org/abs/2311.09117v2
- Date: Mon, 1 Apr 2024 15:04:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 12:23:14.925989
- Title: R-Spin: Efficient Speaker and Noise-invariant Representation Learning with Acoustic Pieces
- Title(参考訳): R-Spin:高能率話者と音響信号を用いた雑音不変表現学習
- Authors: Heng-Jui Chang, James Glass,
- Abstract要約: 本稿では、話者および雑音不変音声表現のためのデータ効率の高いドメイン固有自己スーパービジョン法であるRobust Spin(R-Spin)を紹介する。
R-SpinはSpinの問題を解決し、音響部品の予測を学習することでコンテンツ表現を強化する。
- 参考スコア(独自算出の注目度): 13.046304017209872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces Robust Spin (R-Spin), a data-efficient domain-specific self-supervision method for speaker and noise-invariant speech representations by learning discrete acoustic units with speaker-invariant clustering (Spin). R-Spin resolves Spin's issues and enhances content representations by learning to predict acoustic pieces. R-Spin offers a 12X reduction in computational resources compared to previous state-of-the-art methods while outperforming them in severely distorted speech scenarios. This paper provides detailed analyses to show how discrete units contribute to speech encoder training and improving robustness in diverse acoustic environments.
- Abstract(参考訳): 本稿では、話者不変クラスタリング(Spin)を用いた離散音響単位の学習により、話者および雑音不変の音声表現のためのデータ効率の高いドメイン固有自己スーパービジョン法であるRobust Spin(R-Spin)を提案する。
R-SpinはSpinの問題を解決し、音響部品の予測を学習することでコンテンツ表現を強化する。
R-Spinは、従来の最先端手法と比較して計算資源を12倍に削減し、高度に歪んだ音声シナリオでは性能を向上する。
本稿では,個々の単位が音声エンコーダの訓練にどう貢献するかを詳細に分析し,様々な音響環境におけるロバスト性の向上について述べる。
関連論文リスト
- Disentangling Voice and Content with Self-Supervision for Speaker
Recognition [57.446013973449645]
本稿では,音声における話者の特性と内容の変動を同時にモデル化するアンタングル化フレームワークを提案する。
実験はVoxCelebとSITWのデータセットで実施され、EERとminDCFの平均減少率は9.56%と8.24%である。
論文 参考訳(メタデータ) (2023-10-02T12:02:07Z) - Self-supervised Fine-tuning for Improved Content Representations by
Speaker-invariant Clustering [78.2927924732142]
話者不変クラスタリング(Spin)を自己教師付き学習手法として提案する。
Spinは、単一のGPU上で45分間の微調整で、スピーカー情報を切り離し、コンテンツ表現を保存する。
論文 参考訳(メタデータ) (2023-05-18T15:59:36Z) - Zero-shot text-to-speech synthesis conditioned using self-supervised
speech representation model [13.572330725278066]
提案手法の新たなポイントは、大量のデータで訓練された音声表現から組込みベクトルを得るためにSSLモデルを直接利用することである。
この不整合埋め込みにより、未知話者の再生性能が向上し、異なる音声によるリズム伝達が実現される。
論文 参考訳(メタデータ) (2023-04-24T10:15:58Z) - Multi-Dimensional and Multi-Scale Modeling for Speech Separation
Optimized by Discriminative Learning [9.84949849886926]
音声分離のためのSE変換器とISCIT(Intra-SE-Conformer and Inter-Transformer)
新しいネットワークSE-Conformerは、複数の次元とスケールでオーディオシーケンスをモデル化できる。
論文 参考訳(メタデータ) (2023-03-07T08:53:20Z) - Towards Disentangled Speech Representations [65.7834494783044]
本研究では, ASR と TTS の合同モデリングに基づく表現学習タスクを構築する。
本研究は,その部分の音声信号と,その部分の音声信号とをアンタングルする音声表現を学習することを目的とする。
我々は,これらの特性をトレーニング中に強化することにより,WERを平均24.5%向上させることを示す。
論文 参考訳(メタデータ) (2022-08-28T10:03:55Z) - Improving Noise Robustness of Contrastive Speech Representation Learning
with Speech Reconstruction [109.44933866397123]
実環境における音声認識システムの実現には,雑音の堅牢性が不可欠である。
雑音認識のための自己教師型フレームワークにより学習したノイズロスト表現を用いる。
ラベル付きデータのわずか16%で報告された最高の教師付きアプローチに匹敵するパフォーマンスを実現した。
論文 参考訳(メタデータ) (2021-10-28T20:39:02Z) - Disentangled dimensionality reduction for noise-robust speaker
diarisation [30.383712356205084]
話者埋め込みはダイアリゼーションシステムの性能において重要な役割を果たす。
話者埋め込みは、しばしばノイズや残響などの急激な情報を捉え、性能に悪影響を及ぼす。
本稿では,話者埋め込みから急激な情報を解き放つことのできる新しい次元還元フレームワークを提案する。
また,背景雑音から話者コードが学習されるのを防止するために,音声・非音声指標も提案する。
論文 参考訳(メタデータ) (2021-10-07T12:19:09Z) - End-to-End Diarization for Variable Number of Speakers with Local-Global
Networks and Discriminative Speaker Embeddings [66.50782702086575]
本論文では,単一チャンネルの音声記録から会議ダイアリゼーションを行う,エンドツーエンドのディープネットワークモデルを提案する。
提案システムは,可変数の置換不変なクロスエントロピーに基づく損失関数を用いて,未知数の話者とのミーティングを処理するように設計されている。
論文 参考訳(メタデータ) (2021-05-05T14:55:29Z) - Content-Aware Speaker Embeddings for Speaker Diarisation [3.6398652091809987]
コンテンツ認識型話者埋め込み(CASE)アプローチを提案する。
ケースファクターは話者認識から自動音声認識(asr)を導き、話者特性のモデル化に焦点をあてる。
caseは従来の方法に比べて17.8%の相対的な話者誤り率削減を達成した。
論文 参考訳(メタデータ) (2021-02-12T12:02:03Z) - Speaker Separation Using Speaker Inventories and Estimated Speech [78.57067876891253]
話者在庫(SSUSI)と推定音声(SSUES)を用いた話者分離を提案する。
置換不変訓練(PIT)と音声抽出の利点を組み合わせることで、SSUSIは従来の手法よりも優れている。
論文 参考訳(メタデータ) (2020-10-20T18:15:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。