論文の概要: Fast Detection of Phase Transitions with Multi-Task
Learning-by-Confusion
- arxiv url: http://arxiv.org/abs/2311.09128v1
- Date: Wed, 15 Nov 2023 17:17:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-16 15:08:21.072064
- Title: Fast Detection of Phase Transitions with Multi-Task
Learning-by-Confusion
- Title(参考訳): マルチタスク学習による位相遷移の高速検出
- Authors: Julian Arnold, Frank Sch\"afer, Niels L\"orch
- Abstract要約: 基礎となるフェーズに関する事前知識のないデータから臨界点を識別する最も一般的なアプローチの1つは、ラーニング・バイ・コンフュージョン・スキームである。
これまで、このスキームでは、グリッドを2つの側面に分割するごとに異なるバイナリ分類器を訓練しなければならなかったため、計算コストはグリッドポイントの数と線形にスケールする。
本研究では,単一クラス分類器の訓練のみを必要とする代替実装を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning has been successfully used to study phase transitions. One
of the most popular approaches to identifying critical points from data without
prior knowledge of the underlying phases is the learning-by-confusion scheme.
As input, it requires system samples drawn from a grid of the parameter whose
change is associated with potential phase transitions. Up to now, the scheme
required training a distinct binary classifier for each possible splitting of
the grid into two sides, resulting in a computational cost that scales linearly
with the number of grid points. In this work, we propose and showcase an
alternative implementation that only requires the training of a single
multi-class classifier. Ideally, such multi-task learning eliminates the
scaling with respect to the number of grid points. In applications to the Ising
model and an image dataset generated with Stable Diffusion, we find significant
speedups that closely correspond to the ideal case, with only minor deviations.
- Abstract(参考訳): 機械学習は相転移の研究に成功している。
基礎となるフェーズに関する事前知識のないデータから臨界点を識別する最も一般的なアプローチの1つは、ラーニング・バイ・コンフュージョン・スキームである。
入力として、変化が電位相転移と関連しているパラメータのグリッドから引き出されたシステムサンプルが必要である。
これまで、このスキームでは、グリッドを2つの側面に分割するごとに異なるバイナリ分類器を訓練しなければならなかったため、計算コストはグリッドポイントの数と線形にスケールする。
本稿では,単一のマルチクラス化器のトレーニングのみを必要とする代替実装の提案と紹介を行う。
理想的には、このようなマルチタスク学習は、グリッドポイントの数に関してスケーリングをなくす。
イジングモデルと安定拡散で生成された画像データセットの応用において、理想的な場合と密接に対応し、わずかな偏差しか持たない大きなスピードアップを見出す。
関連論文リスト
- A Closer Look at Few-shot Classification Again [68.44963578735877]
トレーニングフェーズと適応フェーズで構成されている。
トレーニングアルゴリズムと適応アルゴリズムが完全に絡み合っていることを実証的に証明する。
各フェーズのメタアナリシスは、いくつかの興味深い洞察を示し、いくつかのショット分類の重要な側面をよりよく理解するのに役立ちます。
論文 参考訳(メタデータ) (2023-01-28T16:42:05Z) - Point Cloud Upsampling via Cascaded Refinement Network [39.79759035338819]
粗い方法で点雲をサンプリングすることは、まともな解決法である。
既存の粗大なアップサンプリング手法では、追加のトレーニング戦略が必要となる。
本稿では,単純だが効果的なカスケード改良ネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-08T07:09:37Z) - CloudAttention: Efficient Multi-Scale Attention Scheme For 3D Point
Cloud Learning [81.85951026033787]
この作業にトランスフォーマーをセットし、それらを形状分類と部分およびシーンセグメンテーションのための階層的なフレームワークに組み込む。
また、各イテレーションにおけるサンプリングとグループ化を活用して、効率的でダイナミックなグローバルなクロスアテンションを計算します。
提案した階層モデルは,最先端の形状分類を平均精度で達成し,従来のセグメンテーション法と同等の結果を得る。
論文 参考訳(メタデータ) (2022-07-31T21:39:15Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
低ラベル方式で動作するモデルの分散感応クラスを提案する。
最初の手法であるSimple CNAPSは階層的に正規化されたマハラノビス距離に基づく分類器を用いる。
我々はさらに、このアプローチをトランスダクティブ学習環境に拡張し、トランスダクティブCNAPSを提案する。
論文 参考訳(メタデータ) (2022-01-13T18:59:02Z) - Transfer learning of phase transitions in percolation and directed
percolation [2.0342076109301583]
本研究では,非平衡・平衡相転移モデルの研究のために,転送学習に基づくドメイン対向ニューラルネットワーク(DANN)を適用した。
両モデルのDANN学習はモンテカルロシミュレーションに匹敵する信頼性の高い結果をもたらす。
論文 参考訳(メタデータ) (2021-12-31T15:24:09Z) - Improving Calibration for Long-Tailed Recognition [68.32848696795519]
このようなシナリオにおけるキャリブレーションとパフォーマンスを改善する2つの方法を提案します。
異なるサンプルによるデータセットバイアスに対して,シフトバッチ正規化を提案する。
提案手法は,複数の長尾認識ベンチマークデータセットに新しいレコードをセットする。
論文 参考訳(メタデータ) (2021-04-01T13:55:21Z) - Exploiting Invariance in Training Deep Neural Networks [4.169130102668252]
動物視覚システムの2つの基本的なメカニズムに触発され、ディープニューラルネットワークのトレーニングに不変性を与える特徴変換技術を紹介します。
結果として得られるアルゴリズムはパラメータチューニングを少なくし、初期学習率1.0でうまくトレーニングし、異なるタスクに簡単に一般化する。
ImageNet、MS COCO、Cityscapesデータセットでテストされた当社の提案手法は、トレーニングにより少ないイテレーションを必要とし、すべてのベースラインを大きなマージンで上回り、小規模および大規模のバッチサイズのトレーニングをシームレスに行い、画像分類、オブジェクト検出、セマンティックセグメンテーションの異なるコンピュータビジョンタスクに適用します。
論文 参考訳(メタデータ) (2021-03-30T19:18:31Z) - Multi-task Supervised Learning via Cross-learning [102.64082402388192]
我々は,様々なタスクを解くことを目的とした回帰関数の集合を適合させることで,マルチタスク学習と呼ばれる問題を考える。
我々の新しい定式化では、これらの関数のパラメータを2つに分けて、互いに近づきながらタスク固有のドメインで学習する。
これにより、異なるドメインにまたがって収集されたデータが、互いのタスクにおける学習パフォーマンスを改善するのに役立つ、クロス・ファーティライズが促進される。
論文 参考訳(メタデータ) (2020-10-24T21:35:57Z) - Pre-Trained Models for Heterogeneous Information Networks [57.78194356302626]
異種情報ネットワークの特徴を捉えるための自己教師付き事前学習・微調整フレームワークPF-HINを提案する。
PF-HINは4つのデータセットにおいて、各タスクにおける最先端の代替よりも一貫して、大幅に優れています。
論文 参考訳(メタデータ) (2020-07-07T03:36:28Z) - Multi-Stage Transfer Learning with an Application to Selection Process [5.933303832684138]
多段階プロセスでは、決定は順序付けられた段階の順序で行われる。
本研究では,早期に訓練された単純な分類器からの知識を利用するテキスト・マルチ・スタゲ・トランスファー・ラーニング(MSGTL)手法を提案する。
簡単な確率写像を用いて,知識の保存と微調整のトレードオフを制御可能であることを示す。
論文 参考訳(メタデータ) (2020-06-01T21:27:04Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。