論文の概要: Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
- arxiv url: http://arxiv.org/abs/2311.09175v2
- Date: Tue, 30 Apr 2024 15:52:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 19:37:57.195919
- Title: Can Query Expansion Improve Generalization of Strong Cross-Encoder Rankers?
- Title(参考訳): 問合せ拡張は強エンコーダランクの一般化を改善するか?
- Authors: Minghan Li, Honglei Zhuang, Kai Hui, Zhen Qin, Jimmy Lin, Rolf Jagerman, Xuanhui Wang, Michael Bendersky,
- Abstract要約: 本稿では,拡張されたクエリのランク付け結果を融合により高速化し,エンジニアリングの迅速化と集約を行うことにより,強力なニューラルネットワークローカの一般化を向上できることを示す。
BEIR と TREC Deep Learning の実験では,MonoT5 と RankT5 の nDCG@10 スコアがこれらのステップに従って改善された。
- 参考スコア(独自算出の注目度): 72.42500059688396
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Query expansion has been widely used to improve the search results of first-stage retrievers, yet its influence on second-stage, cross-encoder rankers remains under-explored. A recent work of Weller et al. [44] shows that current expansion techniques benefit weaker models such as DPR and BM25 but harm stronger rankers such as MonoT5. In this paper, we re-examine this conclusion and raise the following question: Can query expansion improve generalization of strong cross-encoder rankers? To answer this question, we first apply popular query expansion methods to state-of-the-art cross-encoder rankers and verify the deteriorated zero-shot performance. We identify two vital steps for cross-encoders in the experiment: high-quality keyword generation and minimal-disruptive query modification. We show that it is possible to improve the generalization of a strong neural ranker, by prompt engineering and aggregating the ranking results of each expanded query via fusion. Specifically, we first call an instruction-following language model to generate keywords through a reasoning chain. Leveraging self-consistency and reciprocal rank weighting, we further combine the ranking results of each expanded query dynamically. Experiments on BEIR and TREC Deep Learning 2019/2020 show that the nDCG@10 scores of both MonoT5 and RankT5 following these steps are improved, which points out a direction for applying query expansion to strong cross-encoder rankers.
- Abstract(参考訳): クエリ拡張は、第1段階の検索者による検索結果の改善に広く利用されているが、第2段階のクロスエンコーダローダに対する影響は、まだ未調査である。
Weller et al [44] の最近の研究は、現在の拡張技術は DPR や BM25 のようなより弱いモデルに利益をもたらすが、MonoT5 のようなより強いランク付けには害を与えることを示している。
本稿では、この結論を再検討し、以下の疑問を提起する。 クエリ拡張は、強力なクロスエンコーダローダの一般化を改善することができるか?
この問題に対処するために、まず、最先端のクロスエンコーダローダに一般的なクエリ拡張手法を適用し、劣化したゼロショット性能を検証する。
実験では,高品質なキーワード生成と最小破壊的なクエリ修正という,クロスエンコーダの2つの重要なステップを同定する。
本稿では,拡張クエリのランク付け結果を融合により高速化し,エンジニアリングの迅速化と集約を行うことにより,強力なニューラルネットワークローカの一般化を向上できることを示す。
具体的には、まず、推論チェーンを通じてキーワードを生成するために、命令追従言語モデルを呼び出す。
自己整合性と相互ランク重み付けを活用することで,拡張クエリのランク付け結果を動的に組み合わせる。
BEIR と TREC Deep Learning 2019/2020 の実験では,MonoT5 と RankT5 の nDCG@10 スコアが改善された。
関連論文リスト
- GenCRF: Generative Clustering and Reformulation Framework for Enhanced Intent-Driven Information Retrieval [20.807374287510623]
我々は,多種多様な意図を適応的に捉えるための生成クラスタリング・改革フレームワークGenCRFを提案する。
我々はGenCRFが,nDCG@10で従来のクエリ修正SOTAを最大12%上回り,最先端のパフォーマンスを実現していることを示す。
論文 参考訳(メタデータ) (2024-09-17T05:59:32Z) - Ranking-based Adaptive Query Generation for DETRs in Crowded Pedestrian
Detection [49.27380156754935]
DETRのクエリの数は手動で調整しなければなりませんが、そうでなければ、パフォーマンスは様々な程度に低下します。
本稿では,ランクに基づく適応クエリ生成(RAQG)を提案し,問題を緩和する。
提案手法は単純かつ効果的であり,任意のDETRにプラグインすることで,理論上クエリ適応性を実現する。
論文 参考訳(メタデータ) (2023-10-24T11:00:56Z) - Expand, Rerank, and Retrieve: Query Reranking for Open-Domain Question
Answering [28.05138829730091]
EARはまず、クエリ拡張モデルを適用して、さまざまなクエリセットを生成した後、クエリリランカを使用して、より優れた検索結果につながるクエリを選択する。
クエリ拡張モデルとレトリバーの接続により、EARは従来のスパース検索手法BM25を大幅に強化する。
論文 参考訳(メタデータ) (2023-05-26T16:41:03Z) - ReFIT: Relevance Feedback from a Reranker during Inference [109.33278799999582]
Retrieve-and-Rerankは、ニューラル情報検索の一般的なフレームワークである。
本稿では,リランカを利用してリコールを改善する手法を提案する。
論文 参考訳(メタデータ) (2023-05-19T15:30:33Z) - KEPR: Knowledge Enhancement and Plausibility Ranking for Generative
Commonsense Question Answering [11.537283115693432]
本稿では,ジェネレート・Then-Rankパイプラインアーキテクチャに基づく知識向上と可視性ランキング手法を提案する。
具体的には、キーワードのWiktionary Commonsense知識の観点から質問を拡張し、正規化パターンで修正する。
ELECTRAに基づく回答ランキングモデルを構築し、学習中にロジスティック回帰を行う。
論文 参考訳(メタデータ) (2023-05-15T04:58:37Z) - Noise-Robust Dense Retrieval via Contrastive Alignment Post Training [89.29256833403167]
Contrastive Alignment POst Training (CAPOT) は、指数再生を必要とせず、モデルロバスト性を改善する高効率な微調整法である。
CAPOTはドキュメントエンコーダを凍結することで堅牢な検索を可能にし、クエリエンコーダはノイズの多いクエリを修正されていないルートに整列させる。
MSMARCO、Natural Questions、Trivia QAパス検索のCAPOTノイズ変動を評価し、CAPOTがオーバーヘッドを伴わないデータ増大に類似した影響があることを発見した。
論文 参考訳(メタデータ) (2023-04-06T22:16:53Z) - AugTriever: Unsupervised Dense Retrieval and Domain Adaptation by Scalable Data Augmentation [44.93777271276723]
擬似クエリドキュメントペアを作成することにより,アノテーションフリーでスケーラブルなトレーニングを可能にする2つのアプローチを提案する。
クエリ抽出方法は、元のドキュメントから有能なスパンを選択して擬似クエリを生成する。
転送クエリ生成方法は、要約などの他のNLPタスクのために訓練された生成モデルを使用して、擬似クエリを生成する。
論文 参考訳(メタデータ) (2022-12-17T10:43:25Z) - Optimizing Test-Time Query Representations for Dense Retrieval [34.61821330771046]
TOURは、テスト時間検索の結果によってガイドされるクエリ表現を改善する。
我々は、クロスエンコーダのリランカを利用して、検索結果よりもきめ細かい擬似ラベルを提供する。
TOURは1.3-2.4倍高速で実行しながら、常に最大2.0%のダイレクトリランクを改善する。
論文 参考訳(メタデータ) (2022-05-25T11:39:42Z) - Adversarial Retriever-Ranker for dense text retrieval [51.87158529880056]
本稿では、二重エンコーダレトリバーとクロスエンコーダローダからなるAdversarial Retriever-Ranker(AR2)を提案する。
AR2は、既存の高密度レトリバー法より一貫して大幅に優れている。
これには、R@5から77.9%(+2.1%)、TriviaQA R@5から78.2%(+1.4)、MS-MARCO MRR@10から39.5%(+1.3%)の改善が含まれている。
論文 参考訳(メタデータ) (2021-10-07T16:41:15Z) - CoSQA: 20,000+ Web Queries for Code Search and Question Answering [63.92224685262063]
CoSQAデータセットには、自然言語クエリとコードのペア用の20,604ラベルが含まれている。
本稿では,クエリコードマッチングを強化するために,CoCLRと呼ばれる対照的な学習手法を提案する。
我々は,CodeXGLUEを同じCodeBERTモデルで評価し,CoSQAのトレーニングにより,コード質問応答の精度が5.1%向上したことを示す。
論文 参考訳(メタデータ) (2021-05-27T15:37:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。