論文の概要: LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers
- arxiv url: http://arxiv.org/abs/2502.18139v1
- Date: Tue, 25 Feb 2025 12:09:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:18:56.970764
- Title: LevelRAG: Enhancing Retrieval-Augmented Generation with Multi-hop Logic Planning over Rewriting Augmented Searchers
- Title(参考訳): LevelRAG:複数ホップ論理計画による検索機能強化による検索機能強化
- Authors: Zhuocheng Zhang, Yang Feng, Min Zhang,
- Abstract要約: Retrieval-Augmented Generation (RAG)は、大規模言語モデル(LLM)における幻覚を緩和するための重要な方法である
既存のRAGメソッドは通常、検索範囲を広げるためにハイブリッド検索を使用しながら、ユーザ意図を明確にし、マルチホップロジックを管理するためにクエリ書き換えを使用する。
本稿では,複雑なクエリをアトミックなクエリに分解する高レベル検索手法を提案する。
高精度なキーワード検索にスパース検索の長所を利用するために,Lucene構文を用いて検索精度を向上させるスパース検索手法を開発した。
- 参考スコア(独自算出の注目度): 24.01783076521377
- License:
- Abstract: Retrieval-Augmented Generation (RAG) is a crucial method for mitigating hallucinations in Large Language Models (LLMs) and integrating external knowledge into their responses. Existing RAG methods typically employ query rewriting to clarify the user intent and manage multi-hop logic, while using hybrid retrieval to expand search scope. However, the tight coupling of query rewriting to the dense retriever limits its compatibility with hybrid retrieval, impeding further RAG performance improvements. To address this challenge, we introduce a high-level searcher that decomposes complex queries into atomic queries, independent of any retriever-specific optimizations. Additionally, to harness the strengths of sparse retrievers for precise keyword retrieval, we have developed a new sparse searcher that employs Lucene syntax to enhance retrieval accuracy.Alongside web and dense searchers, these components seamlessly collaborate within our proposed method, \textbf{LevelRAG}. In LevelRAG, the high-level searcher orchestrates the retrieval logic, while the low-level searchers (sparse, web, and dense) refine the queries for optimal retrieval. This approach enhances both the completeness and accuracy of the retrieval process, overcoming challenges associated with current query rewriting techniques in hybrid retrieval scenarios. Empirical experiments conducted on five datasets, encompassing both single-hop and multi-hop question answering tasks, demonstrate the superior performance of LevelRAG compared to existing RAG methods. Notably, LevelRAG outperforms the state-of-the-art proprietary model, GPT4o, underscoring its effectiveness and potential impact on the RAG field.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、大規模言語モデル(LLM)における幻覚を緩和し、その応答に外部知識を統合するための重要な方法である。
既存のRAGメソッドは通常、検索範囲を広げるためにハイブリッド検索を使用しながら、ユーザ意図を明確にし、マルチホップロジックを管理するためにクエリ書き換えを使用する。
しかし,クエリリライトと高密度検索器との密結合により,ハイブリッド検索との互換性が制限され,RAG性能がさらに向上する。
この課題に対処するために、複雑なクエリをアトミックなクエリに分解する高レベルのサーチを導入します。
さらに,厳密なキーワード検索にスパース検索の長所を活用するために,検索精度を高めるためにルーセン構文を用いたスパース検索手法を開発し,提案手法であるtextbf{LevelRAG} にシームレスに協調する。
LevelRAGでは、高レベルのサーチが検索ロジックを編成し、低レベルのサーチ(スパース、ウェブ、高密度)が最適な検索のためにクエリを洗練する。
このアプローチは,検索プロセスの完全性と精度を両立させ,ハイブリッド検索シナリオにおける現在のクエリ書き換え技術に関わる課題を克服する。
シングルホップおよびマルチホップ問合せタスクを含む5つのデータセットで実施した実証実験は、既存のRAG法と比較してLevelRAGの優れた性能を示す。
特に、LevelRAGは最先端のプロプライエタリモデルであるGPT4oよりも優れており、RAGフィールドの有効性と潜在的な影響を裏付けている。
関連論文リスト
- DeepRAG: Thinking to Retrieval Step by Step for Large Language Models [92.87532210660456]
我々はマルコフ決定過程(MDP)として検索強化推論をモデル化するDeepRAGを提案する。
クエリを反復的に分解することで、DeepRAGは外部知識を取得するか、あるいは各ステップでパラメトリック推論に依存するかを動的に決定する。
実験の結果、DeepRAGは解答精度を21.99%向上させ、検索強化推論の最適化の有効性を示した。
論文 参考訳(メタデータ) (2025-02-03T08:22:45Z) - Chain-of-Retrieval Augmented Generation [72.06205327186069]
本稿では,o1-like RAGモデルを学習し,最終回答を生成する前に段階的に関連情報を抽出・推論する手法を提案する。
提案手法であるCoRAGは,進化状態に基づいて動的にクエリを再構成する。
論文 参考訳(メタデータ) (2025-01-24T09:12:52Z) - Don't Do RAG: When Cache-Augmented Generation is All You Need for Knowledge Tasks [11.053340674721005]
検索拡張世代(RAG)は,外部知識ソースを統合することで言語モデルを強化する強力なアプローチとして注目されている。
本稿では、リアルタイム検索をバイパスする代替パラダイムであるキャッシュ拡張生成(CAG)を提案する。
論文 参考訳(メタデータ) (2024-12-20T06:58:32Z) - MBA-RAG: a Bandit Approach for Adaptive Retrieval-Augmented Generation through Question Complexity [30.346398341996476]
本稿では,クエリの複雑性に基づいて最適な検索戦略を動的に選択する強化学習ベースのフレームワークを提案する。
提案手法は,検索コストを低減しつつ,複数のシングルホップおよびマルチホップデータセット上でのアート結果の新たな状態を実現する。
論文 参考訳(メタデータ) (2024-12-02T14:55:02Z) - CodeXEmbed: A Generalist Embedding Model Family for Multiligual and Multi-task Code Retrieval [103.116634967815]
CodeXEmbedは400Mから7Bパラメータの大規模なコード埋め込みモデルのファミリーである。
我々の新しいトレーニングパイプラインは、複数のプログラミング言語を統合し、様々なコード関連タスクを共通の検索フレームワークに変換する。
私たちの7Bモデルは、コード検索において新しい最先端(SOTA)を設定し、以前の主要なモデルであるVoyage-CodeをCoIRベンチマークで20%以上上回っています。
論文 参考訳(メタデータ) (2024-11-19T16:54:45Z) - Optimizing Retrieval-Augmented Generation with Elasticsearch for Enhanced Question-Answering Systems [2.4299671488193497]
本研究の目的は,大規模言語モデル(LLM)の精度と品質を,検索型拡張生成(RAG)フレームワークに統合することにより改善することである。
この実験では、テストデータセットとしてSQuAD(Stanford Question Answering dataset)バージョン2.0が使用されている。
論文 参考訳(メタデータ) (2024-10-18T04:17:49Z) - Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
本稿では,複雑なQAタスクに対する適応ノート拡張RAG(Adaptive Note-Enhanced RAG)と呼ばれる汎用RAGアプローチを提案する。
具体的には、Adaptive-Noteは、知識の成長に関する包括的な視点を導入し、ノート形式で新しい情報を反復的に収集する。
さらに,適切な知識探索を促進するために,適応的な音符ベースの停止探索戦略を用いて,「何を検索し,いつ停止するか」を判断する。
論文 参考訳(メタデータ) (2024-10-11T14:03:29Z) - EfficientRAG: Efficient Retriever for Multi-Hop Question Answering [52.64500643247252]
マルチホップ質問応答のための効率的な検索器であるEfficientRAGを紹介する。
実験の結果、EfficientRAGは3つのオープンドメインのマルチホップ質問応答データセット上で既存のRAG手法を超越していることがわかった。
論文 参考訳(メタデータ) (2024-08-08T06:57:49Z) - Blended RAG: Improving RAG (Retriever-Augmented Generation) Accuracy with Semantic Search and Hybrid Query-Based Retrievers [0.0]
Retrieval-Augmented Generation (RAG) は、大規模言語モデル (LLM) で文書のプライベートな知識基盤を注入し、生成的Q&A (Question-Answering) システムを構築するための一般的なアプローチである。
本稿では,Vector インデックスや Sparse インデックスなどのセマンティック検索手法をハイブリッドクエリ手法と組み合わせた 'Blended RAG' 手法を提案する。
本研究は,NQ や TREC-COVID などの IR (Information Retrieval) データセットの検索結果の改善と,新たなベンチマーク設定を行う。
論文 参考訳(メタデータ) (2024-03-22T17:13:46Z) - Corrective Retrieval Augmented Generation [36.04062963574603]
Retrieval-augmented Generation (RAG) は、検索された文書の関連性に大きく依存しており、検索が失敗した場合のモデルがどのように振る舞うかについての懸念を提起する。
生成の堅牢性を改善するために,CRAG(Corrective Retrieval Augmented Generation)を提案する。
CRAGはプラグアンドプレイであり、様々なRAGベースのアプローチとシームレスに結合できる。
論文 参考訳(メタデータ) (2024-01-29T04:36:39Z) - Generation-Augmented Retrieval for Open-domain Question Answering [134.27768711201202]
GAR(Generation-Augmented Retrieval)は、オープンドメインの質問に答える機能である。
クエリーに対して多様なコンテキストを生成することは、結果の融合が常により良い検索精度をもたらすので有益であることを示す。
GARは、抽出読取装置を備えた場合、抽出QA設定の下で、自然質問およびトリビアQAデータセットの最先端性能を達成する。
論文 参考訳(メタデータ) (2020-09-17T23:08:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。