論文の概要: ContraDoc: Understanding Self-Contradictions in Documents with Large Language Models
- arxiv url: http://arxiv.org/abs/2311.09182v2
- Date: Fri, 12 Apr 2024 21:06:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 23:17:34.585305
- Title: ContraDoc: Understanding Self-Contradictions in Documents with Large Language Models
- Title(参考訳): ContraDoc: 大規模言語モデルによる文書における自己矛盾を理解する
- Authors: Jierui Li, Vipul Raheja, Dhruv Kumar,
- Abstract要約: われわれはContraDocを紹介した。ContraDocは、複数のドメインにまたがる長いドキュメントにおける自己コントラクションを研究する最初の人間アノテーション付きデータセットである。
我々は,このデータセット上でGPT3.5, GPT4, PaLM2, LLaMAv2の4つの最先端オープンソースおよび商用LLMの現在の機能を分析する。
GPT4はこのタスクで最高のパフォーマンスを発揮し、人間より優れていますが、信頼できないことや、よりニュアンスとコンテキストを必要とする自己矛盾に苦労していることが分かりました。
- 参考スコア(独自算出の注目度): 7.428236410246183
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In recent times, large language models (LLMs) have shown impressive performance on various document-level tasks such as document classification, summarization, and question-answering. However, research on understanding their capabilities on the task of self-contradictions in long documents has been very limited. In this work, we introduce ContraDoc, the first human-annotated dataset to study self-contradictions in long documents across multiple domains, varying document lengths, self-contradictions types, and scope. We then analyze the current capabilities of four state-of-the-art open-source and commercially available LLMs: GPT3.5, GPT4, PaLM2, and LLaMAv2 on this dataset. While GPT4 performs the best and can outperform humans on this task, we find that it is still unreliable and struggles with self-contradictions that require more nuance and context. We release the dataset and all the code associated with the experiments (https://github.com/ddhruvkr/CONTRADOC).
- Abstract(参考訳): 近年,大規模言語モデル (LLM) は文書分類,要約,質問応答など,様々な文書レベルのタスクにおいて顕著な性能を示している。
しかし,長期文書における自己矛盾作業における能力の理解に関する研究は非常に限られている。
本研究では,複数のドメインにまたがる長いドキュメント,さまざまなドキュメントの長さ,自己コントラクションタイプ,スコープで自己コントラクションを研究対象とする,人手による最初のデータセットであるContraDocを紹介する。
次に、このデータセット上で、GPT3.5、GPT4、PaLM2、LLaMAv2の4つの最先端オープンソースおよび商用LLMの現在の機能を分析する。
GPT4はこのタスクで最高のパフォーマンスを発揮し、人間より優れていますが、信頼できないことや、よりニュアンスとコンテキストを必要とする自己矛盾に苦労していることが分かりました。
データセットと実験に関連するすべてのコード(https://github.com/ddhruvkr/CONTRADOC)をリリースします。
関連論文リスト
- Contextual Document Embeddings [77.22328616983417]
本稿では,コンテキスト化された文書埋め込みのための2つの補完手法を提案する。
第一に、文書近傍を明示的にバッチ内コンテキスト損失に組み込む別のコントラスト学習目標である。
第二に、隣接する文書情報をエンコードされた表現に明示的にエンコードする新しいコンテキストアーキテクチャ。
論文 参考訳(メタデータ) (2024-10-03T14:33:34Z) - A Comparative Analysis of Large Language Models for Code Documentation Generation [1.9282110216621835]
本論文は, GPT-3.5, GPT-4, Bard, Llama2, Starchat などのモデルについて, 精度, 完全性, 妥当性, 可読性, 可読性, タイムテイクなどのパラメータについて検討した。
論文 参考訳(メタデータ) (2023-12-16T06:40:09Z) - DocumentNet: Bridging the Data Gap in Document Pre-Training [78.01647768018485]
本稿では,Webから大規模かつ弱いラベル付きデータを収集し,VDERモデルの学習に役立てる手法を提案する。
収集されたデータセットはDocumentNetと呼ばれ、特定のドキュメントタイプやエンティティセットに依存しない。
広く採用されているVDERタスクの実験は、DocumentNetを事前トレーニングに組み込んだ場合、大幅に改善されている。
論文 参考訳(メタデータ) (2023-06-15T08:21:15Z) - DAPR: A Benchmark on Document-Aware Passage Retrieval [57.45793782107218]
我々は,このタスクemphDocument-Aware Passage Retrieval (DAPR)を提案する。
State-of-The-Art(SoTA)パスレトリバーのエラーを分析しながら、大きなエラー(53.5%)は文書コンテキストの欠如に起因する。
提案するベンチマークにより,検索システムの開発・比較を今後行うことができる。
論文 参考訳(メタデータ) (2023-05-23T10:39:57Z) - Cross-Modal Entity Matching for Visually Rich Documents [4.8119678510491815]
視覚的にリッチなドキュメントは、視覚的な手がかりを使ってセマンティクスを強化します。
これらのドキュメントの構造化クエリを可能にする既存の作業は、これを考慮に入れない。
この制限に対処するクロスモーダルなエンティティマッチングフレームワークであるJunoを提案する。
論文 参考訳(メタデータ) (2023-03-01T18:26:14Z) - Document Flattening: Beyond Concatenating Context for Document-Level
Neural Machine Translation [45.56189820979461]
Document Flattening(DocFlat)技術は、Flat-Batch Attention(FB)とNeural Context Gate(NCG)をTransformerモデルに統合する。
我々は、英語とドイツ語の翻訳のための3つのベンチマークデータセットに関する総合的な実験と分析を行う。
論文 参考訳(メタデータ) (2023-02-16T04:38:34Z) - Document-Level Relation Extraction with Sentences Importance Estimation
and Focusing [52.069206266557266]
文書レベルの関係抽出(DocRE)は、複数の文の文書から2つのエンティティ間の関係を決定することを目的としている。
我々はDocREのための文重要度スコアと文集中損失を設計するSIEF(Sentence Estimation and Focusing)フレームワークを提案する。
2つのドメインの実験結果から、SIEFは全体的なパフォーマンスを改善するだけでなく、DocREモデルをより堅牢にします。
論文 参考訳(メタデータ) (2022-04-27T03:20:07Z) - DocNLI: A Large-scale Dataset for Document-level Natural Language
Inference [55.868482696821815]
自然言語推論(NLI)は、様々なNLP問題を解決するための統一的なフレームワークとして定式化されている。
ドキュメントレベルのNLI用に新たに構築された大規模データセットであるDocNLIを紹介する。
論文 参考訳(メタデータ) (2021-06-17T13:02:26Z) - SciREX: A Challenge Dataset for Document-Level Information Extraction [56.83748634747753]
ドキュメントレベルで大規模な情報抽出データセットを作成するのは難しい。
複数のIEタスクを含む文書レベルのIEデータセットであるSciREXを紹介する。
我々は、従来の最先端のIEモデルをドキュメントレベルのIEに拡張する強力なベースラインとして、ニューラルモデルを開発する。
論文 参考訳(メタデータ) (2020-05-01T17:30:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。