論文の概要: A Comparative Analysis of Large Language Models for Code Documentation Generation
- arxiv url: http://arxiv.org/abs/2312.10349v2
- Date: Sat, 27 Apr 2024 15:15:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-01 00:05:37.025927
- Title: A Comparative Analysis of Large Language Models for Code Documentation Generation
- Title(参考訳): コードドキュメンテーション生成のための大規模言語モデルの比較分析
- Authors: Shubhang Shekhar Dvivedi, Vyshnav Vijay, Sai Leela Rahul Pujari, Shoumik Lodh, Dhruv Kumar,
- Abstract要約: 本論文は, GPT-3.5, GPT-4, Bard, Llama2, Starchat などのモデルについて, 精度, 完全性, 妥当性, 可読性, 可読性, タイムテイクなどのパラメータについて検討した。
- 参考スコア(独自算出の注目度): 1.9282110216621835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a comprehensive comparative analysis of Large Language Models (LLMs) for generation of code documentation. Code documentation is an essential part of the software writing process. The paper evaluates models such as GPT-3.5, GPT-4, Bard, Llama2, and Starchat on various parameters like Accuracy, Completeness, Relevance, Understandability, Readability and Time Taken for different levels of code documentation. Our evaluation employs a checklist-based system to minimize subjectivity, providing a more objective assessment. We find that, barring Starchat, all LLMs consistently outperform the original documentation. Notably, closed-source models GPT-3.5, GPT-4, and Bard exhibit superior performance across various parameters compared to open-source/source-available LLMs, namely LLama 2 and StarChat. Considering the time taken for generation, GPT-4 demonstrated the longest duration, followed by Llama2, Bard, with ChatGPT and Starchat having comparable generation times. Additionally, file level documentation had a considerably worse performance across all parameters (except for time taken) as compared to inline and function level documentation.
- Abstract(参考訳): 本稿では,コードドキュメンテーション生成のための大規模言語モデル(LLM)の包括的比較分析について述べる。
コードドキュメンテーションは、ソフトウェア記述プロセスの重要な部分です。
GPT-3.5、GPT-4、Bard、Llama2、Starchatといったモデルに対して、さまざまなレベルのコードドキュメンテーションに対して、正確性、完全性、妥当性、理解可能性、可読性、時間といったさまざまなパラメータについて評価する。
我々の評価は、主観性を最小化するためにチェックリストに基づくシステムを使用し、より客観的な評価を提供する。
私たちは、Starchatを禁止し、全てのLLMがオリジナルのドキュメントを一貫して上回っていることに気付きました。
特に、GPT-3.5、GPT-4、BardはオープンソースのLLM、すなわちLLama 2とStarChatと比較して、様々なパラメータで優れた性能を示す。
生成に要する時間を考えると、GPT-4は最長持続時間を示し、続いてLlama2、Bard、ChatGPT、Starchatが同世代である。
さらに、ファイルレベルのドキュメンテーションは、インラインやファンクションレベルのドキュメンテーションに比べて、すべてのパラメータ(時間を除いて)でかなりパフォーマンスが悪くなりました。
関連論文リスト
- DOCBENCH: A Benchmark for Evaluating LLM-based Document Reading Systems [99.17123445211115]
本稿では,大規模言語モデル(LLM)に基づく文書読解システムを評価するベンチマークであるDocBenchを紹介する。
我々のベンチマークには、人間のアノテーションの募集と、合成質問の生成が含まれる。
実際の文書は229件、質問は1,102件で、5つのドメインにまたがって4種類の質問がある。
論文 参考訳(メタデータ) (2024-07-15T13:17:42Z) - Efficient Document Ranking with Learnable Late Interactions [73.41976017860006]
クロスエンコーダ(CE)とデュアルエンコーダ(DE)モデルは,情報検索におけるクエリドキュメント関連性の2つの基本的なアプローチである。
関連性を予測するため、CEモデルは共同クエリドキュメントの埋め込みを使用し、DEモデルは分解クエリとドキュメントの埋め込みを維持している。
近年、DEM構造と軽量スコアラを用いて、より好ましいレイテンシ品質のトレードオフを実現するために、遅延相互作用モデルが提案されている。
論文 参考訳(メタデータ) (2024-06-25T22:50:48Z) - Leave No Document Behind: Benchmarking Long-Context LLMs with Extended Multi-Doc QA [71.04146366608904]
長いコンテキストモデリング能力は広く注目を集めており、超コンテキストウィンドウを持つLarge Language Models (LLMs) の出現につながっている。
拡張多文書質問応答(QA)によって現実的なシナリオに整合する新しい長文ベンチマークであるLoongを提案する。
Loong氏は、Spotlight Locating, Comparison, Clustering, Chain of Reasoningという、コンテキスト長の4つのタスクを紹介している。
論文 参考訳(メタデータ) (2024-06-25T09:42:56Z) - Bug In the Code Stack: Can LLMs Find Bugs in Large Python Code Stacks [1.3586572110652484]
本研究では,大規模文書から文脈情報を取得する上でのLLM(Large Language Models)の機能について検討する。
我々のベンチマークであるBug In The Code Stack (BICS)は、大規模なソースコード内の単純な構文バグを識別するLLMの能力を評価するために設計されている。
その結果,(1)検索タスクのテキストベースの環境に比べ,コードベースの環境の方が有意に困難であり,(2)異なるモデル間の性能差が大きく,(3)コンテキスト長と性能劣化との間には顕著な相関関係があることが判明した。
論文 参考訳(メタデータ) (2024-06-21T17:37:10Z) - Automatic Generation and Evaluation of Reading Comprehension Test Items with Large Language Models [1.565361244756411]
本稿では,大規模言語モデル(LLM)を用いて読解項目の生成と評価を行う。
我々は人的・自動的な評価のためのプロトコルを開発した。
以上の結果から,両モデルともゼロショット設定で許容品質のアイテムを生成できることが示唆されるが,GPT-4はLlama 2より明らかに優れていた。
論文 参考訳(メタデータ) (2024-04-11T13:11:21Z) - Ada-LEval: Evaluating long-context LLMs with length-adaptable benchmarks [76.43527940649939]
大規模言語モデル(LLM)の長文理解を評価するベンチマークであるAda-LEvalを紹介する。
Ada-LEvalにはTSortとBestAnswerという2つの挑戦的なサブセットが含まれている。
Ada-LEvalを用いた4つの最先端クローズドソースAPIモデルと6つのオープンソースモデルを評価した。
論文 参考訳(メタデータ) (2024-04-09T17:30:48Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
文,意味,多言語レベルでユーザ命令を攻撃することにより,逆ユーザ命令を構築する。
我々は、ロバストネス設定を組み込んだベンチマークを用いて、3つのクローズドソースと4つのオープンソースLCMをテストする。
GPT-4は我々のベンチマークで最も高い性能と強靭性を示す。
論文 参考訳(メタデータ) (2024-03-06T15:33:32Z) - ContraDoc: Understanding Self-Contradictions in Documents with Large Language Models [7.428236410246183]
われわれはContraDocを紹介した。ContraDocは、複数のドメインにまたがる長いドキュメントにおける自己コントラクションを研究する最初の人間アノテーション付きデータセットである。
我々は,このデータセット上でGPT3.5, GPT4, PaLM2, LLaMAv2の4つの最先端オープンソースおよび商用LLMの現在の機能を分析する。
GPT4はこのタスクで最高のパフォーマンスを発揮し、人間より優れていますが、信頼できないことや、よりニュアンスとコンテキストを必要とする自己矛盾に苦労していることが分かりました。
論文 参考訳(メタデータ) (2023-11-15T18:23:17Z) - Hybrid Long Document Summarization using C2F-FAR and ChatGPT: A
Practical Study [1.933681537640272]
ChatGPTは、大規模言語モデル(LLM)分野における最新のブレークスルーである。
本稿では,ビジネス記事や書籍などの長い文書のハイブリッド抽出と要約パイプラインを提案する。
以上の結果から,ChatGPTの使用は長文を要約するための非常に有望なアプローチであるが,まだ成熟していないことが示唆された。
論文 参考訳(メタデータ) (2023-06-01T21:58:33Z) - Enabling Large Language Models to Generate Text with Citations [37.64884969997378]
大規模言語モデル (LLM) は情報検索のツールとして広く使われている。
我々の目的は、LLMが引用文を生成できるようにし、その事実の正しさと妥当性を向上させることである。
自動LLMのCitation Evaluationのための最初のベンチマークであるALCEを提案する。
論文 参考訳(メタデータ) (2023-05-24T01:53:49Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクに対して、一貫性、凝集性、関連性、流動性のある回答を生成することができる。
本稿では,LLMの談話モデルにおける能力について詳細に評価する。
論文 参考訳(メタデータ) (2023-04-05T03:49:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。