Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
- URL: http://arxiv.org/abs/2311.09210v2
- Date: Thu, 03 Oct 2024 04:35:39 GMT
- Title: Chain-of-Note: Enhancing Robustness in Retrieval-Augmented Language Models
- Authors: Wenhao Yu, Hongming Zhang, Xiaoman Pan, Kaixin Ma, Hongwei Wang, Dong Yu,
- Abstract summary: Chain-of-Noting (CoN) is a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios.
CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.
- Score: 54.55088169443828
- License:
- Abstract: Retrieval-augmented language models (RALMs) represent a substantial advancement in the capabilities of large language models, notably in reducing factual hallucination by leveraging external knowledge sources. However, the reliability of the retrieved information is not always guaranteed. The retrieval of irrelevant data can lead to misguided responses, and potentially causing the model to overlook its inherent knowledge, even when it possesses adequate information to address the query. Moreover, standard RALMs often struggle to assess whether they possess adequate knowledge, both intrinsic and retrieved, to provide an accurate answer. In situations where knowledge is lacking, these systems should ideally respond with "unknown" when the answer is unattainable. In response to these challenges, we introduces Chain-of-Noting (CoN), a novel approach aimed at improving the robustness of RALMs in facing noisy, irrelevant documents and in handling unknown scenarios. The core idea of CoN is to generate sequential reading notes for retrieved documents, enabling a thorough evaluation of their relevance to the given question and integrating this information to formulate the final answer. We employed ChatGPT to create training data for CoN, which was subsequently trained on an LLaMa-2 7B model. Our experiments across four open-domain QA benchmarks show that RALMs equipped with CoN significantly outperform standard RALMs. Notably, CoN achieves an average improvement of +7.9 in EM score given entirely noisy retrieved documents and +10.5 in rejection rates for real-time questions that fall outside the pre-training knowledge scope.
Related papers
- Retriever-and-Memory: Towards Adaptive Note-Enhanced Retrieval-Augmented Generation [72.70046559930555]
We propose a generic RAG approach called Adaptive Note-Enhanced RAG (Adaptive-Note) for complex QA tasks.
Specifically, Adaptive-Note introduces an overarching view of knowledge growth, iteratively gathering new information in the form of notes.
In addition, we employ an adaptive, note-based stop-exploration strategy to decide "what to retrieve and when to stop" to encourage sufficient knowledge exploration.
arXiv Detail & Related papers (2024-10-11T14:03:29Z) - FaithEval: Can Your Language Model Stay Faithful to Context, Even If "The Moon is Made of Marshmallows" [74.7488607599921]
FaithEval is a benchmark to evaluate the faithfulness of large language models (LLMs) in contextual scenarios.
FaithEval comprises 4.9K high-quality problems in total, validated through a rigorous four-stage context construction and validation framework.
arXiv Detail & Related papers (2024-09-30T06:27:53Z) - W-RAG: Weakly Supervised Dense Retrieval in RAG for Open-domain Question Answering [28.79851078451609]
Large Language Models (LLMs) often struggle to generate factual answers relying solely on their internal (parametric) knowledge.
To address this limitation, Retrieval-Augmented Generation (RAG) systems enhance LLMs by retrieving relevant information from external sources.
We propose W-RAG by utilizing the ranking capabilities of LLMs to create weakly labeled data for training dense retrievers.
arXiv Detail & Related papers (2024-08-15T22:34:44Z) - Enhancing Robustness of Retrieval-Augmented Language Models with In-Context Learning [5.053086684547045]
This study introduces an in-context learning-based approach to enhance the reasoning capabilities of RALMs.
Our approach increases accuracy in identifying unanswerable and conflicting scenarios without requiring additional fine-tuning.
arXiv Detail & Related papers (2024-08-08T12:42:43Z) - RAG and RAU: A Survey on Retrieval-Augmented Language Model in Natural Language Processing [0.2302001830524133]
This survey paper addresses the absence of a comprehensive overview on Retrieval-Augmented Language Models (RALMs)
The paper discusses the essential components of RALMs, including Retrievers, Language Models, and Augmentations.
RALMs demonstrate utility in a spectrum of tasks, from translation and dialogue systems to knowledge-intensive applications.
arXiv Detail & Related papers (2024-04-30T13:14:51Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Empirical evaluation of Uncertainty Quantification in
Retrieval-Augmented Language Models for Science [0.0]
This study investigates how uncertainty scores vary when scientific knowledge is incorporated as pretraining and retrieval data.
We observe that an existing RALM finetuned with scientific knowledge as the retrieval data tends to be more confident in generating predictions.
We also found that RALMs are overconfident in their predictions, making inaccurate predictions more confidently than accurate ones.
arXiv Detail & Related papers (2023-11-15T20:42:11Z) - ReEval: Automatic Hallucination Evaluation for Retrieval-Augmented Large Language Models via Transferable Adversarial Attacks [91.55895047448249]
This paper presents ReEval, an LLM-based framework using prompt chaining to perturb the original evidence for generating new test cases.
We implement ReEval using ChatGPT and evaluate the resulting variants of two popular open-domain QA datasets.
Our generated data is human-readable and useful to trigger hallucination in large language models.
arXiv Detail & Related papers (2023-10-19T06:37:32Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
Large language models (LLMs) have shown superior performance without task-specific fine-tuning.
Retrieval-based methods can offer non-parametric world knowledge and improve the performance on tasks such as question answering.
Self-Knowledge guided Retrieval augmentation (SKR) is a simple yet effective method which can let LLMs refer to the questions they have previously encountered.
arXiv Detail & Related papers (2023-10-08T04:22:33Z) - Knowledge-Driven CoT: Exploring Faithful Reasoning in LLMs for
Knowledge-intensive Question Answering [17.672572064705445]
Large language models (LLMs) equipped with Chain-of-Thought (CoT) have shown impressive reasoning ability in various downstream tasks.
We propose a framework called Knowledge-Driven Chain-of-Thought (KD-CoT) to verify and modify reasoning traces in CoT via interaction with external knowledge.
arXiv Detail & Related papers (2023-08-25T09:23:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.