論文の概要: Controllable Text Summarization: Unraveling Challenges, Approaches, and Prospects -- A Survey
- arxiv url: http://arxiv.org/abs/2311.09212v3
- Date: Tue, 28 May 2024 02:04:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-30 04:07:24.401431
- Title: Controllable Text Summarization: Unraveling Challenges, Approaches, and Prospects -- A Survey
- Title(参考訳): 制御可能なテキスト要約: 課題, アプローチ, 展望 - 調査-
- Authors: Ashok Urlana, Pruthwik Mishra, Tathagato Roy, Rahul Mishra,
- Abstract要約: ジェネリックテキスト要約アプローチは、個々のユーザの特定の意図やニーズに対処できないことが多い。
我々は、制御可能なテキスト要約(CTS)タスクを形式化し、その共有特性と目的に応じて制御可能な属性を分類する。
この結果から, CTSの潜在的な解決策と今後の方向性を探りながら, 限界と研究ギャップを明らかにした。
- 参考スコア(独自算出の注目度): 7.393476206148905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generic text summarization approaches often fail to address the specific intent and needs of individual users. Recently, scholarly attention has turned to the development of summarization methods that are more closely tailored and controlled to align with specific objectives and user needs. Despite a growing corpus of controllable summarization research, there is no comprehensive survey available that thoroughly explores the diverse controllable attributes employed in this context, delves into the associated challenges, and investigates the existing solutions. In this survey, we formalize the Controllable Text Summarization (CTS) task, categorize controllable attributes according to their shared characteristics and objectives, and present a thorough examination of existing datasets and methods within each category. Moreover, based on our findings, we uncover limitations and research gaps, while also exploring potential solutions and future directions for CTS. We release our detailed analysis of CTS papers at https://github.com/ashokurlana/controllable_text_summarization_survey.
- Abstract(参考訳): ジェネリックテキスト要約アプローチは、個々のユーザの特定の意図やニーズに対処できないことが多い。
近年,特定の目的やユーザニーズに合わせて,より緊密に調整・制御された要約手法の開発に学術的注目が向けられている。
コントロール可能な要約研究のコーパスが増えているにもかかわらず、この文脈で使用される多様なコントロール可能な属性を徹底的に調査し、関連する課題を掘り下げ、既存のソリューションを調査する包括的な調査は行われていない。
本研究では、制御可能なテキスト要約(CTS)タスクを形式化し、それらの共有特性と目的に応じて制御可能な属性を分類し、各カテゴリにおける既存のデータセットとメソッドの徹底的な検証を行う。
さらに,本研究の結果から限界や研究のギャップを明らかにするとともに,CTSの潜在的な解決策や今後の方向性を探求する。
CTS論文の詳細な分析はhttps://github.com/ashokurlana/controllable_text_summarization_survey.comで公開しています。
関連論文リスト
- Introducing a Comprehensive, Continuous, and Collaborative Survey of Intrusion Detection Datasets [2.7082111912355877]
COMIDDSは、侵入検出データセットを前例のないレベルで包括的に調査する試みである。
実際のデータサンプルや関連する出版物へのリンクを含む、各データセットに関する構造化されたクリティカルな情報を提供する。
論文 参考訳(メタデータ) (2024-08-05T14:40:41Z) - DISCOVER: A Data-driven Interactive System for Comprehensive Observation, Visualization, and ExploRation of Human Behaviour [6.716560115378451]
我々は,人間行動分析のための計算駆動型データ探索を効率化するために,モジュール型でフレキシブルでユーザフレンドリなソフトウェアフレームワークを導入する。
我々の主な目的は、高度な計算方法論へのアクセスを民主化することであり、これにより研究者は、広範囲の技術的熟練を必要とせずに、詳細な行動分析を行うことができる。
論文 参考訳(メタデータ) (2024-07-18T11:28:52Z) - CADS: A Systematic Literature Review on the Challenges of Abstractive Dialogue Summarization [7.234196390284036]
本稿では、英語対話におけるトランスフォーマーに基づく抽象要約に関する研究を要約する。
ダイアログ要約における主な課題(言語、構造、理解、話者、サリエンス、事実)をカバーします。
言語などいくつかの課題がかなりの進歩を遂げているのに対して、理解、事実性、サリエンスといった課題は依然として困難であり、重要な研究機会を持っている。
論文 参考訳(メタデータ) (2024-06-11T17:30:22Z) - Text Generation: A Systematic Literature Review of Tasks, Evaluation, and Challenges [7.140449861888235]
このレビューでは、テキスト生成の作業を5つの主要なタスクに分類する。
各タスクについて、関連する特徴、サブタスク、および特定の課題についてレビューする。
近年のテキスト生成論文では,タスクやサブタスクに共通する9つの顕著な課題が報告されている。
論文 参考訳(メタデータ) (2024-05-24T14:38:11Z) - A Survey on Interpretable Cross-modal Reasoning [64.37362731950843]
マルチメディア分析から医療診断に至るまで、クロスモーダル推論(CMR)が重要な分野として浮上している。
この調査は、解釈可能なクロスモーダル推論(I-CMR)の領域を掘り下げる
本調査では,I-CMRの3段階分類法について概説する。
論文 参考訳(メタデータ) (2023-09-05T05:06:48Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
本研究では,自然言語処理とコンピュータビジョンの分野における9つのタスクの集合であるベンチマークを作成する。
外部知識を制約としてモデル化し、各タスクの制約のソースを特定し、これらの制約を使用するさまざまなモデルを実装します。
論文 参考訳(メタデータ) (2023-02-16T16:45:36Z) - Weakly Supervised Anomaly Detection: A Survey [75.26180038443462]
異常検出(AD)は、さまざまなアプリケーションによる機械学習において重要なタスクである。
弱教師付き異常検出法(WSAD)の総合的な調査を行った。
各設定に対して、正式な定義、鍵アルゴリズム、潜在的な将来の方向性を提供する。
論文 参考訳(メタデータ) (2023-02-09T10:27:21Z) - EntSUM: A Data Set for Entity-Centric Summarization [27.845014142019917]
制御可能な要約は、ユーザが指定した側面や好みを考慮に入れた要約を提供することを目的としている。
本稿では、制御可能な要約のための人間アノテーション付きデータセットsetSUMを紹介し、制御の側面として名前付きエンティティに焦点を当てる。
論文 参考訳(メタデータ) (2022-04-05T13:45:54Z) - Exploring Neural Models for Query-Focused Summarization [74.41256438059256]
クエリ中心の要約(QFS)に対するニューラルネットワークの体系的な探索を行う。
本稿では,QMSumデータセットの最先端性能を最大3.38ROUGE-1,3.72ROUGE-2,3.28ROUGE-Lのマージンで達成する2つのモデル拡張を提案する。
論文 参考訳(メタデータ) (2021-12-14T18:33:29Z) - Abstractive Query Focused Summarization with Query-Free Resources [60.468323530248945]
本稿では,汎用的な要約リソースのみを利用して抽象的なqfsシステムを構築する問題を考える。
本稿では,要約とクエリのための新しい統一表現からなるMasked ROUGE回帰フレームワークであるMargeを提案する。
最小限の監視から学習したにもかかわらず,遠隔管理環境において最先端の結果が得られた。
論文 参考訳(メタデータ) (2020-12-29T14:39:35Z) - CTRLsum: Towards Generic Controllable Text Summarization [54.69190421411766]
現在、制御可能な要約のための新しいフレームワークである。
本手法により,ユーザは要約システムと対話することで,生成された要約の複数の側面を制御できる。
単一の統一モデルを使用することで、sumは推論時に要約操作の幅広い範囲を達成できる。
論文 参考訳(メタデータ) (2020-12-08T08:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。