論文の概要: The Cybersecurity Crisis of Artificial Intelligence: Unrestrained
Adoption and Natural Language-Based Attacks
- arxiv url: http://arxiv.org/abs/2311.09224v1
- Date: Mon, 25 Sep 2023 10:48:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 16:07:56.366324
- Title: The Cybersecurity Crisis of Artificial Intelligence: Unrestrained
Adoption and Natural Language-Based Attacks
- Title(参考訳): 人工知能のサイバーセキュリティ危機: 制限のない採用と自然言語による攻撃
- Authors: Andreas Tsamados, Luciano Floridi, Mariarosaria Taddeo
- Abstract要約: 自己回帰言語モデル(AR-LLM)の広範な統合により、ユニークな拡張性を持つ重要な脆弱性が導入されている。
このコメンタリーでは、これらの脆弱性、攻撃のベクターとしての自然言語への依存、サイバーセキュリティのベストプラクティスへの挑戦を分析します。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The widespread integration of autoregressive-large language models (AR-LLMs),
such as ChatGPT, across established applications, like search engines, has
introduced critical vulnerabilities with uniquely scalable characteristics. In
this commentary, we analyse these vulnerabilities, their dependence on natural
language as a vector of attack, and their challenges to cybersecurity best
practices. We offer recommendations designed to mitigate these challenges.
- Abstract(参考訳): ChatGPTのような自動回帰言語モデル(AR-LLM)が、検索エンジンのような確立したアプリケーションに広く統合され、ユニークな拡張性を持つ重要な脆弱性が導入された。
本稿では,これらの脆弱性,攻撃ベクトルとしての自然言語への依存,サイバーセキュリティのベストプラクティスへの挑戦について分析する。
これらの課題を軽減するためのレコメンデーションを提供します。
関連論文リスト
- Jailbreaking and Mitigation of Vulnerabilities in Large Language Models [4.564507064383306]
大規模言語モデル(LLM)は、自然言語の理解と生成を前進させることで、人工知能を変革した。
これらの進歩にもかかわらず、LSMは、特に注射と脱獄攻撃を急ぐために、かなりの脆弱性を示してきた。
このレビューでは、これらの脆弱性についての研究状況を分析し、利用可能な防衛戦略を提示する。
論文 参考訳(メタデータ) (2024-10-20T00:00:56Z) - Cyber Knowledge Completion Using Large Language Models [1.4883782513177093]
IoT(Internet of Things)をCPS(Cyber-Physical Systems)に統合することで,サイバー攻撃面が拡大した。
CPSのリスクを評価することは、不完全で時代遅れのサイバーセキュリティ知識のため、ますます困難になっている。
近年のLarge Language Models (LLMs) の進歩は、サイバー攻撃による知識の完成を促進するユニークな機会となる。
論文 参考訳(メタデータ) (2024-09-24T15:20:39Z) - Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI [52.138044013005]
生成AI、特に大規模言語モデル(LLM)は、製品アプリケーションにますます統合される。
新たな攻撃面と脆弱性が出現し、自然言語やマルチモーダルシステムにおける敵の脅威に焦点を当てる。
レッドチーム(英語版)はこれらのシステムの弱点を積極的に識別する上で重要となり、ブルーチーム(英語版)はそのような敵の攻撃から保護する。
この研究は、生成AIシステムの保護のための学術的な洞察と実践的なセキュリティ対策のギャップを埋めることを目的としている。
論文 参考訳(メタデータ) (2024-09-23T10:18:10Z) - Threat Modelling and Risk Analysis for Large Language Model (LLM)-Powered Applications [0.0]
大規模言語モデル(LLM)は、高度な自然言語処理機能を提供することによって、様々なアプリケーションに革命をもたらした。
本稿では,LSMを利用したアプリケーションに適した脅威モデリングとリスク分析について検討する。
論文 参考訳(メタデータ) (2024-06-16T16:43:58Z) - Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
顔認識システム(FRS)は、監視やユーザー認証を含む重要なアプリケーションにますます統合されている。
最近の研究によると、FRSの脆弱性は敵(例えば、敵パッチ攻撃)やバックドア攻撃(例えば、データ中毒の訓練)であることが明らかになっている。
論文 参考訳(メタデータ) (2024-05-21T13:34:23Z) - SEvenLLM: Benchmarking, Eliciting, and Enhancing Abilities of Large Language Models in Cyber Threat Intelligence [27.550484938124193]
本稿では,サイバーセキュリティのインシデント分析と応答能力をベンチマークし,評価し,改善するためのフレームワークを提案する。
サイバーセキュリティのWebサイトから、サイバーセキュリティの生テキストをクロールすることによって、高品質なバイリンガル命令コーパスを作成します。
命令データセットSEvenLLM-Instructは、マルチタスク学習目的のサイバーセキュリティLLMのトレーニングに使用される。
論文 参考訳(メタデータ) (2024-05-06T13:17:43Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-Regressive Selective Replacement Ascent (ASRA)は、決定点プロセス(DPP)と品質と類似性の両方に基づいてプロンプトを選択する離散最適化アルゴリズムである。
6種類の事前学習言語モデルに対する実験結果から,ASRAによる有害成分の抽出の有効性が示された。
論文 参考訳(メタデータ) (2024-03-01T05:28:06Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence(GAI)は、AIイノベーションの最前線に立ち、多様なコンテンツを生成するための急速な進歩と非並行的な能力を示す。
本稿では,通信ネットワークの物理層におけるセキュリティ向上におけるGAIの様々な応用について,広範な調査を行う。
私たちは、物理的レイヤセキュリティの課題に対処する上で、GAIの役割を掘り下げ、通信の機密性、認証、可用性、レジリエンス、整合性に重点を置いています。
論文 参考訳(メタデータ) (2024-02-21T06:22:41Z) - Large Language Models in Cybersecurity: State-of-the-Art [4.990712773805833]
大規模言語モデル(LLM)の台頭は、私たちの知性の理解に革命をもたらした。
本研究は, サイバーセキュリティの領域におけるLLMの防衛的, 敵的応用の徹底的な評価を, 既存の文献を考察した。
論文 参考訳(メタデータ) (2024-01-30T16:55:25Z) - HAZARD Challenge: Embodied Decision Making in Dynamically Changing
Environments [93.94020724735199]
HAZARDは、火災、洪水、風などの3つの予期せぬ災害シナリオで構成されている。
このベンチマークにより、さまざまなパイプラインで自律エージェントの意思決定能力を評価することができる。
論文 参考訳(メタデータ) (2024-01-23T18:59:43Z) - Robust Physical-World Attacks on Face Recognition [52.403564953848544]
ディープニューラルネットワーク(DNN)の開発によって顔認識が大幅に促進された
近年の研究では、DNNは敵対的な事例に対して非常に脆弱であることが示されており、現実世界の顔認識の安全性に対する深刻な懸念が提起されている。
ステッカーによる顔認識の物理的攻撃について検討し、その対向的堅牢性をよりよく理解する。
論文 参考訳(メタデータ) (2021-09-20T06:49:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。